Integrals of motion with displacement transformations

M. Ortuño

Universidad de Murcia

November 2015, KITP

Louk Rademaker (KITP, Santa Barbara)

Brief outline

- The model
- Diagonalization of the Hamiltonian through displacement transformations
- Properties of the diagonalized Hamiltonian and of the integrals of motion
- Results

Many-body localization

- With strong enough disorder, all single-particle states are localized.
- Conductivity is then assumed to be by hopping between localized states.
 Mott's variable range hopping.
- The standard driving mechanism for hopping is the phonon bath, but any extended, continuous bath could do the same role.
- Basko et al. (2006) proposed the electron-electron interaction as the driving mechanism above a certain temperature.
- The problem can be thought of as many-body localization in Fock space.

Model

- Spinless fermions in 1D
- The total Hamiltonian that we consider is

$$H = \sum_{i} \epsilon_{i} n_{i} + \sum_{\langle i,j \rangle} t c_{j}^{\dagger} c_{i} + \frac{1}{2} \sum_{\langle i,j \rangle} V n_{j} n_{i}$$

where c_i^\dagger is the creation operator on site i and $n_i = c_i^\dagger c_i$

- t=1 is our unit of energy and $\epsilon_i \in [-W/2, W/2]$
- ullet Short range potential: nearest neighbours for fermions (V=1)

Previous simulations

- List of talks of this conference
- Exact diagonalization
- DMRG
- Local Integrals of Motion
 - ▶ Huse, Nandkishore, Oganesyan (2014)
 - ▶ Chandran, Kim, Vidal, Abanin (2015)
 - ▶ Ross, Mueller, Scardiccio (2014)
 - ▶ You, Qi, Xu (2015)

Diagonalization of the Hamiltonian

Local integrals of motion

We want to diagonalize the Hamiltonian

$$H = \sum_{\alpha} \phi_{\alpha} n_{\alpha} + \frac{1}{2} \sum_{\alpha\beta\gamma\eta} V_{\alpha\beta\gamma\eta} c_{\alpha}^{\dagger} c_{\beta} c_{\gamma}^{\dagger} c_{\eta}$$

The idea was to perform a basis change of the form

$$c_{\alpha}
ightarrow c_{\alpha} + rac{V}{\Delta \phi} n_{\alpha} c_{\beta} c_{\gamma}^{\dagger} c_{\eta}$$

Diagonalization of the Hamiltonian

Local integrals of motion

We want to diagonalize the Hamiltonian

$$H = \sum_{\alpha} \phi_{\alpha} n_{\alpha} + \frac{1}{2} \sum_{\alpha\beta\gamma\eta} V_{\alpha\beta\gamma\eta} c_{\alpha}^{\dagger} c_{\beta} c_{\gamma}^{\dagger} c_{\eta}$$

The idea was to perform a basis change of the form

$$c_{\alpha} \rightarrow c_{\alpha} + \frac{V}{\Delta \phi} n_{\alpha} c_{\beta} c_{\gamma}^{\dagger} c_{\eta}$$

Louk Rademaker (KITP) arXiv:1507.07276

Diagonalization of the Hamiltonian

Local integrals of motion

We want to diagonalize the Hamiltonian

$$H = \sum_{\alpha} \phi_{\alpha} n_{\alpha} + \frac{1}{2} \sum_{\alpha\beta\gamma\eta} V_{\alpha\beta\gamma\eta} c_{\alpha}^{\dagger} c_{\beta} c_{\gamma}^{\dagger} c_{\eta}$$

The idea was to perform a basis change of the form

$$c_{\alpha} \rightarrow c_{\alpha} + \frac{V}{\Delta \phi} n_{\alpha} c_{\beta} c_{\gamma}^{\dagger} c_{\eta}$$

Louk Rademaker (KITP) arXiv:1507.07276

He found a family of transformations that diagonalize H in the form

$$H = \sum_{\alpha} b_{\alpha} \tilde{n}_{\alpha} + \sum_{\alpha\beta} b_{\alpha\beta} \tilde{n}_{\alpha} \tilde{n}_{\beta} + \cdots$$

obtaining explicitly the local integrals of motion

$$\tilde{n}_{\alpha} = U^{\dagger} n_{\alpha} U = n_{\alpha} + \sum_{\alpha\beta\gamma\eta} a_{\chi\beta\gamma\eta} c_{\chi}^{\dagger} c_{\beta} c_{\gamma}^{\dagger} c_{\eta} + \cdots$$

Displacement transformations

Displacement transformation:
$$\mathcal{D}_X(\lambda) = \exp\{\lambda(X^{\dagger} - X)\}$$

$$X = n_{\alpha 1} \cdots n_{\alpha k} c_{\beta 1}^{\dagger} c_{\beta 2} c_{\beta 3}^{\dagger} \cdots c_{\beta l}$$

$$\mathcal{D}_X(\lambda) = 1 + \sin \lambda (X^{\dagger} - X) + (\cos \lambda - 1)(X^{\dagger}X + XX^{\dagger})$$

Displacement transformations

Displacement transformation:
$$\mathcal{D}_X(\lambda) = \exp{\{\lambda(X^{\dagger} - X)\}}$$

$$X = n_{\alpha 1} \cdots n_{\alpha k} c_{\beta 1}^{\dagger} c_{\beta 2} c_{\beta 3}^{\dagger} \cdots c_{\beta l}$$

$$\mathcal{D}_X(\lambda) = 1 + \sin \lambda (X^{\dagger} - X) + (\cos \lambda - 1)(X^{\dagger}X + XX^{\dagger})$$

$$\tilde{n}_{\delta} = \mathcal{D}_{X}^{\dagger}(\lambda) n_{\delta} \mathcal{D}_{X}(\lambda) = n_{\delta} \pm \frac{1}{2} \sin 2\lambda (X^{\dagger} + X) \mp \sin^{2} \lambda (X^{\dagger} X - XX^{\dagger})$$

upper sign if $\delta=\beta$ or η and lower sign if $\delta=\alpha$ or γ

$$\mathcal{D}_X^{\dagger}(\lambda)(X^{\dagger} + X)\mathcal{D}_X(\lambda) = \cos 2\lambda(X^{\dagger} + X) - \sin 2\lambda(X^{\dagger}X - XX^{\dagger})$$

Displacement transformations

Displacement transformation: $\mathcal{D}_X(\lambda) = \exp\{\lambda(X^{\dagger} - X)\}\$

$$X = n_{\alpha 1} \cdots n_{\alpha k} c_{\beta 1}^{\dagger} c_{\beta 2} c_{\beta 3}^{\dagger} \cdots c_{\beta l}$$

$$\mathcal{D}_X(\lambda) = 1 + \sin \lambda (X^{\dagger} - X) + (\cos \lambda - 1)(X^{\dagger}X + XX^{\dagger})$$

$$\tilde{n}_{\delta} = \mathcal{D}_{X}^{\dagger}(\lambda) n_{\delta} \mathcal{D}_{X}(\lambda) = n_{\delta} \pm \frac{1}{2} \sin 2\lambda (X^{\dagger} + X) \mp \sin^{2} \lambda (X^{\dagger} X - XX^{\dagger})$$

upper sign if $\delta = \beta$ or η and lower sign if $\delta = \alpha$ or γ

$$\mathcal{D}_X^{\dagger}(\lambda)(X^{\dagger} + X)\mathcal{D}_X(\lambda) = \cos 2\lambda(X^{\dagger} + X) - \sin 2\lambda(X^{\dagger}X - XX^{\dagger})$$

$$\tan 2\lambda = \frac{V_{\alpha\beta\gamma\eta}}{\phi_{\alpha} + \phi_{\gamma} - \phi_{\beta} - \phi_{\eta}}$$

No problem with resonances

Trivial example

One particle in two sites

•
$$H = \phi_1 n_1 + \phi_2 n_2 - t(c_1^{\dagger} c_2 + c_2^{\dagger} c_1)$$
 $\begin{pmatrix} \phi_1 & -t \\ -t & \phi_2 \end{pmatrix}$

- Define $X = c_1^{\dagger} c_2$
- $\bullet \ \tan 2\lambda = \frac{-2t}{\phi_1 \phi_2}$
- $\tilde{n}_1 = n_1 \sin 2\lambda (X^{\dagger} + X) + \sin^2 \lambda [(1 n_1)n_2 n_1(1 n_2)]$
- $\tilde{n}_2 = n_2 + \sin 2\lambda (X^{\dagger} + X) \sin^2 \lambda [(1 n_1)n_2 n_1(1 n_2)]$
- $\langle 10|\tilde{n}_1|10\rangle = 1 \sin^2 \lambda$
- $\langle 10|\tilde{n}_2|10\rangle = \sin^2 \lambda$
- $\bullet \sin^2 \lambda = \frac{4t^2}{(\phi_1 \phi_2)^2 + 4t^2}$

Consecutive transformations

• Each transformation modifies the remaining quantum terms of H. For example, for $X=c_{\alpha}^{\dagger}c_{\beta}c_{\gamma}^{\dagger}c_{\eta},\ Y=c_{\alpha}^{\dagger}c_{i}c_{\gamma}^{\dagger}c_{j},\ Z=c_{n}^{\dagger}c_{i}c_{\beta}^{\dagger}c_{j}$

$$\mathcal{D}_X^{\dagger}(\lambda)(Y^{\dagger} + Y)\mathcal{D}_X(\lambda) = \cos\lambda(Y^{\dagger} + Y) - \sin\lambda(Z^{\dagger} + Z) + \cdots$$

- One start with the transformation corresponding to the higher $|\lambda|$, i.e. higher $|V_{\alpha\beta\gamma\eta}/(\phi_\alpha+\phi_\gamma-\phi_\beta-\phi_\eta)|$, and continues performing consecutive transformations with decreasing values of λ until all four operators terms in H have been cancelled (to a certain accuracy).
- Continue transforming terms with 6 operators, then 8, and so on.
- Elliminating terms with a given number of operators do not generate terms with fewer operators.
- The final unitary transformation is

$$U = \prod_{i} \mathcal{D}_{X_i}(\lambda_i)$$

Practical implementation

CPU time $t \propto L^{3n/2}$

Time

Figure: CPU time as a function of system size diagonalizing terms with 4 operators. W=6 and cutoff equal 10^{-3} .

Layer by layer up to terms with 8 operators.

$$V_{\alpha,\beta,\gamma,\eta}/(E_{\alpha}+E_{\beta}-E_{\gamma}-E_{\eta})$$

Strength

Figure: Number of transitions of strength $|V/\Delta\phi| \mbox{ for several disorders } W.$

Errors do not depend much on cutoff.

Hamiltonian in diagonal form

Coefficients L=24 Average strength 0.01 0.001 0.0001 20 Distance

Figure: Average value of the coefficients of the Hamiltonian as a function of distance for $\,W=8.\,$

$$H = \sum_{\alpha} b_{\alpha} \tilde{n}_{\alpha} + \sum_{\alpha\beta} b_{\alpha\beta} \tilde{n}_{\alpha} \tilde{n}_{\beta} + \cdots$$

- Structure of the coefficients: $\langle |b_{\alpha}| \rangle$, $\langle |b_{\alpha\beta}| \rangle$, ...
- Exponential decay
- Average value roughly independent of the number of operators n

Disorder dependence

Average coefficient

Figure: Average value of the coefficients of the Hamiltonian as a function of distance for several values of the disorder W.

- The slope gives us a disorder dependent localization length.
- In the extended phase the coefficients are independent of distance.
- The extended phase can be diagonalized with this method.

Distribution of the coefficients of H

(Unnormalized) distribution

Figure: Unnormalized distribution function of different types of coefficients of H.

- Distribution for terms with two n operators is asymmetric. Net contribution.
- Contributions from higher order terms are roughly symmetric, but keep increasing.
- Choose the order of transformations that minimize higher order contributions. Or approximate high order terms by average values.

Errors

Ground state energy

Figure: Error in the ground state energy as a function of disorder for two different sizes.

- The largest error are at the transition region.
- Errors depend on the number of terms considered, but not much on the cutoff for the coefficients.
- Relatively small contribution from high order terms.
- Error for the transmission amplitude are larger and, in this case, high order terms are crucial.

Integrals of motion

Figure: Comparisson between the exponential decay of the terms of ${\cal H}$ and of the classical terms of the IOM.

- Similar behavior between the terms of the Hamiltonian and the classical terms of the integrals of motion.
- Localization lengths slightly different.

Transmission amplitude

• Preliminary calculation of $\langle \ln | \tilde{c}_1^{\dagger} \tilde{c}_L | \rangle$ at infinite T.

Figure: Transmission amplitude as a function of size for several values of the disorder.

Occupation number

- Simplified version.
- As a proof of principle, we calculate $\langle \Phi_0 | \tilde{n}_\alpha | \Phi_0 \rangle$ where $|\Phi_0\rangle = c_\beta^\dagger \cdots c_\gamma^\dagger |0\rangle$.
- There seems to be a transition at $W_{\rm c} \approx 6$.

Occupation number

Figure: Average occupation number of a local integral of motion as a function of disorder.

Future aims and possibilities

- Study convergence of the method
- Best order of the transitions to minimize higher order terms
- Perform all transitions involving a site and then choose a value for its density operator.
- Quantum Coulomb gap (and probably Altshuler-Aronov gap)
- Level statistics