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I. Expansion of an Atomic Cloud: Classical or Quantum?

Motivation: In the cold atomic ‘time-of-flight” measurements, one suddenly

releases the confining potential and the atomic cloud expands. Typically, it
has been assumed that this expansion is governed by a purely classical
Newtonian or wave kinematics. Naively, it is not at all obvious why this
works. After all, before releasing the trapping potential, one may be in a
quantum regime with Bose condensation or Fermi-degeneracy. How can
these atoms suddenly behave like classical canon balls?

Main question: Are there instances where the quantum time evolution of
a macroscopic system is qualitatively different from the equivalent
classical system?

Il. Expansion into the vacuum
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The expansion of an atomic cloud into vacuum is the same
when computed fully quantum-mechanically or classically!

Ill. Expansion into a cold bath

a. Fourier's Law b. Relativistic Fermions C.
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We start with a hot subsystem A in a cold
bath. How will A thermalize?
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IV. Method of Modular Hamiltonian V. Experimental realization
Separate a system into two parts A and a bath B.
The initial density matrix is a product of a thermal
state in A and a thermal state in B. @ B
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It’s easier to compute the modular Hamiltonian: M = —logp

For noninteracting particles, the time evolution is simply:
M(t) = kak/e_l(g’“_gk’)t chk/ +logZ

kK’
The modular matrix decays as a ballistic powerlaw,
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though the Greens function (and the energy) can have different time-
N N -1
G(t) = [em(t) - 7]]

dependence, since

1. Trap an atom cloud

2. 'Build a wall’ between A and B
3. Heat up system A

4. At t=0, remove wall

5. At later time, build wall
6. Remove all atoms in B
7. Measure kinetic energy
in A using Time-Of-Flight




