The v=-2 state in Twisted Bilayer Graphene:
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a Bad Mott Insulator?
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Graphene

Single atomic layer of carbon atoms

Honeycomb lattice

Effective massless Dirac fermions
at K and K’ points in Brillouin zone




Bilayer Graphene

(a) AA stacking . (b) AB stacking
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Atoms directly above each other A-sites in one layer on top of B-sites

, ) of second layer
Dirac cones shifted up/down

One Dirac cone gapped
Other Dirac cone becomes quadratic




Twisted Bilayer Graphene

At small angles, you get And therefore a mini-Brillouin zone
a Moiré pattern

The K points of both layers are close

with enlarged unit cell - _
Including interlayer hopping leads to level

repulsion,
which leads to a reduced Fermi velocity
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Ref: Cao et al, Nature 2018 (two papers); Bistritzer PNAS 2011



Bad Mott insulator
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At |v|=2,
conductance suddenly
drops below T=4K

Commensurate
density suggests
Mott physics

But... system only
insulating at low T,
easily destroyed by
field, at lower T
becomes SC...

A Bad Mott insulator?




Superconductivity
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Why is it so exciting?

I ! I ! ! I ! I

A “clean” system with strong correlations electron doping || hole doping
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2019: More Domes & Fans
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Ref: Lu, 1903.06513; Uri, 1908.04595



Quantum Anomalous Hall Effect

In samples where the hBN substrate is aligned with the graphene, the
substrate opens up a gap at charge neutrality.

The resulting band structure has opposite Chern numbers for different
Dirac ‘valleys’

At v=3, interactions then cause ferromagnetic state
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Ref: Serlin, 1907.00261; Sharpe, 1901.03520; Bultinck, 1901.08110



Nematicity

Can locally measure the charge density by integrating STS spectra
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Ref: Jiang, 1904.10153
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Planckian dissipation
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Experimental conclusion
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Goal: a simple model

Full lattice model is challenging: >11,000 bands

To include interactions, need a simplified model
of local Wannier orbitals

wn() = [ dk Uk, vl

Compare to getting square lattice Hubbard
model out of the cuprates

Ndj..Ce,Culy Laz.xSryCu0s




€S

Symmetr

-
Vv o
>
(C C
- Q
et
o O T
2 b0
(&) qvm ()]
8 o € 1998 Y4988
ac £ e
< c >
g — O
Q N
s 5O _
— o]
+— ~ 2
= 0om
=0
N o) o
S cowo
v © 0O
N00eS ) %
SK 3 |
// ]
N // Y
BI A I/I/\I\I
\A 7\
! 7 - \
\\\_// S
|

g 800e:
)
LAY 00
8305 0g0 0800
e Se!

)
850208
839

in particular Valley symmetry

Q
L
(V)
Q
| -
(D)
e
S
Q
&
o
()]
oo
C
-
©
4+
o
| -
.
>
| -
i)
Q
=
=
>
()]
v
(%)
(]
-

More symmetry in continuum model:

guestion

Wei's

00
i
o
N
P
oc
o
o
=
L=
(%]
e
~
on
N
00
N
=
o)
o
00
i
S
o
N
4
7]
oc




“Fragile” topology

Topological insulator cannot be transformed into an atomic insulator

In monolayer graphene, Dirac cone have sublattice chirality
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. Monolayer Graphene Twisted Bilayer Graphene
__ (single valley)
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In single valley in twisted bilayers both cones have the same chirality!

It cannot be described by an atomic orbitals, even though it doesn’t
have a topological index

Ref: Zou, 1806.07873; Po, 1709.06551



Way out: nonlocal orbitals

Construct Wannier orbitals that are non-local: ‘fidget spinners’

Orbital 1
wi? .
0.5 1‘ 1!5|[SM'1] Orbital 2
Total | \\x/
- P

\ N
X X
But interactions are insane: n 0 | > 3 45
up to 5" nearest neighbor are v, 1857 1533 1.145  1.068 0697 0.614
comparable in enerav! ploroy) 1857 1524 1136 1.081 0679 0610
P gy J, N/A 0376 00645 0010 0014 0.001

Ref: Koshino, PRX 2018; Kang, PRX 2018




Way out: more orbitals

You can also include more orbitals to circumvent the non-locality of the
Wannier functions
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Note: for Mott localization some symmetry agnosticism is useful
Band symmetries are not necessarily respected by the Mott state!

Ref: Po, 1808.02482; Haule, 1901.09852



Real-space structure

The main question is:

[{ What is the real-space structure of the orbitals? ]

First observation: density of states at charge-neutrality is peaked at AA




Flat bands

Look at the whole band structure
Using tight-binding model

In-plane: nearest neighbor hopping

Interlayer hopping ¢, (r) =t ge~IFI/¢ Z :

0.3F
0.2}
0.1}

0.0

E(eV)

0L

2t

3

0.02 7

0.01

-0.01}

Zoom-in around charge neutrality:
Bandwidth of 11.25 meV

Double degenerate at K

Almost double degenerate at M and I

Bandgap towards other bands




States at charge neutrality
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States at the flat band ed

However, at the ; ]

Gamma point, the 0.0004 | ;
wavefunctions vanish i ;
at the AA centers. %%% 1
> i ]
0.0002 i

They form a : M—-orbitals

. . L] ' -
ring-like structure! 0.0001 -

0.0000 Lt




Mixed-orbital flat bands

1.0

Effective model should include this hybridization
‘Center’ orbitals hop on honeycomb lattice

0.6

P Fre(k) = 1 4 ik 4 ginak
| ‘Ring’ orbitals hop on triangular lattice
0‘2; —— Overlap with 'center' orbital
o Overlap with 'ring’ orbital fF(k) = 2 (COS aj - k + cosas - k —|_ cos asg - k)
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Coulomb interactions

Coulomb repulsion is long-range and quite strong in graphene
B 1.438

T 0116+ 1 — 1]
Two physical effects:

V(r; — I‘j) Vv (Wehling PRL 2011)

- Hubbard U - depends on the orbital
490 meV for center orbital

U = /drdr’|w(r)|2 V(r — r’) |¢(r’)|2 Localization!

~

- Unequal charge distribution




Hartree: Set-up

The idea is to decouple density-density interactions
i
introducing Hartree fields ¢

hi = Z V(7 — 7)(6n(75))

J

Solved this self-consistently for different doping levels (from v=-4 to 0)

(Note that we do not include Fock corrections.<cjcl>c;[ci )



Charge transfer

v= 0, before

v=-1, before v=-2, before v=-3, before v=-4, before
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Depending on the electron

02| before Hartree ﬁ 0-02} after Hartree
density, have a macroscopic
charge imbalance between
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Renormalized bandstructure

Charge transfer from center to ring causes
states at I pushed up in energy

Band flattening, mostly at | v|=2

And the Van Hove singularity in STS is
pinned to Fermi level




Speculations on v=2

Need to add Hubbard U on top of renormalized bands

But... U is typically on the order of or larger than band-gap!

If U > Ay,
Two dispersive bands energy is lower by

occupying one flat band
and one dispersive band

Band gap Ay
A

e Two flat bands
Charge neutrality

g




Speculations on v=2 (cont.)

Localized (flat band) electrons hybridized with conducting (dispersive
band) electrons: this is a Kondo lattice system!
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Very low T implies very subtle energy competition — future work...



Summary

ot I Twisted bilayer graphene is an interesting
interacting material
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Insulator / semimetal?
Band insulator
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Challenge to find effective low-energy model

v S
8

| SC 8 sC|
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v=3 v=4

i

v=-4 v=-3 v=-1 v=0 v=1

There are ring and center orbitals in the full tight-binding
model

Interactions favor a charge-transfer from center to ring at
Hartree-level

Renormalized band-structure still needs Hubbard interactions,
still work in progress

In collaboration with Paula Mellado (Santiago, Chile)
and Dima Abanin (Geneve, Switzerland)
References: arXiv:1805.05294 (PRB 2018), arXiv:1907.00940




