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Figure 2 | Gate-tunable superconductivity in MA-TBG. (a) Two-probe 
conductance G2 = I/Vbias of device M1 measured in zero magnetic field 
(red trace) and at a perpendicular field of B⊥ = 0.4 T (blue trace). The 
traces show the typical “V”-shaped conductance near charge neutrality 
n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns, 
corresponding to filling ±4 electrons in each moiré unit cell, and the 
conductance reductions at intermediate integer fillings of the superlattice 
due to Coulomb interactions. Near -2e- per unit cell filling, there is a 
considerable conductance enhancement which is suppressed in B⊥ = 0.4 
T, signaling the onset of superconductivity. Measurements are taken 

at 70 mK. For these traces, Vbias = 10 µV. (b) Four-probe resistance Rxx 
measured at densities corresponding to the region bounded by pink 
dashed lines in (a), versus temperature. Two superconducting (SC) 
domes are clearly observed next to the half-filling state (“Mott”, centered 
around −ns/2 = -1.58×1012 cm-2). The remaining regions in the diagram 
are labeled as “Metal” due to the metallic temperature dependence. The 
highest critical temperature observed in device M1 is Tc=0.5 K (50% 
normal state resistance). (c) Similar plot as in (b) but measured in device 
M2, showing two asymmetric and overlapping domes. The highest critical 
temperature in this device is Tc=1.7 K.
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Effective massless Dirac fermions
at K and K’ points in Brillouin zone



Bilayer Graphene

Atoms directly above each other

Dirac cones shifted up/down
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A-sites in one layer on top of B-sites 
of second layer

One Dirac cone gapped
Other Dirac cone becomes quadratic



Twisted Bilayer Graphene
At small angles, you get 
a Moiré pattern

with enlarged unit cell

5

And therefore a mini-Brillouin zone

The K points of both layers are close

Including interlayer hopping leads to level 
repulsion, 
which leads to a reduced Fermi velocity

Ref: Cao et al, Nature 2018 (two papers); Bistritzer PNAS 2011
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The emergence of half-filling states is not expected in the absence of 
interactions between electrons and appears to be correlated with the 
narrow bandwidth near the first magic angle. In our experiment, sev-
eral separate pieces of evidence support the presence of flat bands. First, 
we measured the temperature dependence of the amplitude of 
Shubnikov–de Haas oscillations in device D1, from which we extracted 
the effective mass of the electron, m* (Fig. 3b; see Methods and 
Extended Data Fig. 3 for analysis). For a Dirac spectrum with eight-fold 
degeneracy (spin, valley and layer), we expect that ⁎= / πm h n v(8 )2

F
2 , 

which scales as 1/vF . The large measured m* near charge neutrality in 
device D1 indicates a reduction in vF by a factor of 25 compared to 
monolayer graphene (4 ×   104 m s− 1 compared to 106 m s− 1). This large 
reduction in the Fermi velocity is a characteristic that is expected for flat 
bands. Second, we analysed the capacitance data of device D2 near the 
Dirac point (Fig. 3a) and found that vF needs to be reduced to about 
0.15v0 for a good fit to the data (Methods, Extended Data Fig. 1b). Third, 
another direct manifestation of flat bands is the flattening of the con-
ductance minimum at charge neutrality above a temperature of 40 K 
(thermal energy kT =  3.5 meV), as seen in Fig. 3c. Although the con-
ductance minimum in monolayer graphene can be observed clearly even 
near room temperature, it is smeared out in magic-angle TBG when the 
thermal energy kT becomes comparable to vFkθ/2 ≈   4 meV—the energy 
scale that spans the Dirac-like portion of the band (Fig. 1c)24–26.

Owing to the localized nature of the electrons, a plausible explanation 
for the gapped behaviour at half-filling is the formation of a Mott-like 
insulator driven by Coulomb interactions between electrons27,28. To 
this end, we consider a Hubbard model on a triangular lattice, with 
each site corresponding to a localized region with AA stacking in the 
moiré pattern (Fig. 1i). In Fig. 3d we show the bandwidth of the E >   0 
branch of the low-energy bands for 0.04° <   θ <   2° that we calculated 
numerically using a continuum model of TBG6. The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated to be e2/(4π εd), where d is the effective linear 

dimension of each site (with the same length scale as the moiré period), 
ε is the effective dielectric constant including screening and e is the 
electron charge. Combining ε and the dependence of d on twist angle 
into a single constant κ, we write U =  e2θ/(4π ε0κa), where a =  0.246 nm 
is the lattice constant of monolayer graphene. In Fig. 3d we plot the 
on-site energy U versus θ for κ =  4–20. As a reference, κ =  4 if we 
assume ε =  10ε0 and d is 40% of the moiré wavelength. For a range of 
possible values of κ it is therefore reasonable that U/W >   1 occurs near 
the magic angles and results in half-filling Mott-like gaps27. However, 
the realistic scenario is much more complicated than these simplistic 
estimates; a complete understanding requires detailed theoretical anal-
yses of the interactions responsible for the correlated gaps.

The Shubnikov–de Haas oscillation frequency fSdH (Fig. 3b) also 
supports the existence of Mott-like correlated gaps at half-filling. Near 
the charge neutrality point, the oscillation frequency closely follows 
fSdH =  φ0| n| /M where φ0 =  h/e is the flux quantum and M =  4 indicates 
the spin and valley degeneracies. However, at | n|  >   ns/2, we observe 
oscillation frequencies that corresponds to straight lines, fSdH =  φ0(| n|   
−   ns/2)/M, in which M has a reduced value of 2. Moreover, these lines 
extrapolate to zero exactly at the densities of the half-filling states, n =   
±  ns/2. These oscillations point to small Fermi pockets that result from 
doping the half-filling states, which might originate from charged 
quasi particles near a Mott-like insulator phase29. The halved degener-
acy of the Fermi pockets might be related to the spin–charge separation 
that is predicted in a Mott insulator29. These results are also supported 
by Hall measurements at 0.3 K (Extended Data Fig. 4; see Methods for 
discussion), which show a ‘resetting’ of the Hall densities when the 
system is electrostatically doped beyond the Mott-like states.

The half-filling states at ±  ns/2 are suppressed by the application 
of a magnetic field. In Fig. 4a, b we show that both insulating phases 
start to conduct at a perpendicular field of B =  4 T and recover normal 
conductance by B =  8 T. A similar effect is observed for an in-plane 
magnetic field (Extended Data Fig. 5d). The insensitivity to field  
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Figure 2 | Half-filling insulating states in magic-angle TBG. a, Measured 
conductance G of magic-angle TBG device D1 with θ =  1.08° and 
T =  0.3 K. The Dirac point is located at n =  0. The lighter-shaded regions 
are superlattice gaps at carrier density n =  ±  ns =  ±  2.7 ×   1012 cm− 2. The 
darker-shaded regions denote half-filling states at ±  ns/2. The inset shows 
the density locations of half-filling states in the four different devices. 

See Methods for a definition of the error bars. b, Minimum conductance 
values in the p-side (red) and n-side (blue) half-filling states in device 
D1. The dashed lines are fits of exp[−  ∆ /(2kT)] to the data, where 
∆  ≈   0.31 meV is the thermal activation gap. c, d, Temperature-dependent 
conductance of D1 for temperatures from about 0.3 K (black) to 1.7 K 
(orange) near the p-side (c) and n-side (d) half-filling states.
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orientation suggests that the suppression of the half-filling states 
is due to a Zeeman effect rather than an orbital effect, because the 
latter would be affected by only the perpendicular component of  
the magnetic field. For an effective g-factor of g =  2 due to electron  

spin, the Zeeman energy that is needed to suppress the half-filling  
states is approximately gµBB =  0.5 meV, where µB is the Bohr magne-
ton—the same order of magnitude as that of the thermal  excitation 
energy.
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Figure 3 | Flat bands in magic-angle TBG. a, Capacitance measurements 
of device D2 at 0.3 K (blue) and 2 K (pink). The change in the measured 
capacitance (∆ C; upper traces) is plotted on the left axis and the loss 
tangent (lower traces) is shown on the right axis. For densities 
corresponding to half-filling (±  ns/2; dashed vertical lines), a reduction in 
∆ C (on the p-side only) and an enhancement in loss tangent (on both 
sides) are observed in the 0.3 K data. These effects disappear in the 2 K 
measurements. b, The effective mass m* and oscillation frequency fSdH as 
extracted from temperature-dependent Shubnikov–de Haas oscillations. 
The fitting curve (red dashed line) is ⁎= | |/ πm h n v(8 )2

F
2 , assuming a 

uniform Fermi velocity of vF . For magic-angle device D1, the estimated 
Fermi velocity of vF =  4 ×   104 m s− 1 is a factor of 25 less than that for 
pristine graphene, v0 =  106 m s− 1. The measured oscillation frequencies 
indicate the existence of small Fermi pockets that start from the half-filling 
states, with half the degeneracy of the main Fermi surface of the Dirac 
points. Shaded regions at half-filling and full-filling correspond to the 

shaded rectangles in Fig. 2a. The error bars in m* and fSdH give the 
uncertainty of fitting to the Lifshitz–Kosevich formula (defined in 
Methods) and correspond to the 90% confidence level. The blue dashed 
curves denote the fSdH that is expected for Fermi surfaces with degeneracy 
M =  4 and M =  2, starting at charge neutrality and at the half-filling states, 
respectively. c, Gate dependence of the conductance of device D1 at 
different temperatures, 4.5 K, 8 K, 15 K, 29 K, 40 K, 50 K, 70 K, 100 K and 
120 K. The curves are each shifted vertically by 0.006 mS for clarity.  
See Extended Data Fig. 5a, b for the temperature dependence up to  
room temperature. d, Comparison between the bandwidth W for the E >   0 
flat-band branch in TBG (thick blue line) and the on-site energy U =  e2θ/
(4π ε0κa) (thin coloured lines for different values of κ) for different twist 
angles θ. Near the magic angles θ i

magic
( )  ≈   1.1°, 0.5°, … for i =  1, 2, …, U >   W 

is satisfied for a range of possible values of κ (defined in the main text) and 
so the system can be driven into a Mott-like insulator state.
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Figure 4 | Magnetic-field response of the half-filling insulating phases. 
a, b, Dependence of the conductance on the perpendicular magnetic field 
B⊥  of the half-filling states for device D1 on the p-side (a) and the n-side 
(b). The measurement is taken at 0.3 K. c, Arrhenius plot (cirlces) of the 
conductance of the p-side half-filling state at different magnetic fields. 
The inset shows the thermal activation gap ∆  extracted from fitting the 
data in the main plot with exp[−  ∆ /(2kT)] (solid lines). d–f, Schematics 
of the density of states (DOS) in different scenarios. The single-particle 
flat bands (E >   0 and E <   0 bands are both shown, with EF in the E >   0 

band (n-doping); d) are split into upper and lower many-body bands by 
interactions (e). This occurs when EF is at half-filling of the upper band. 
Upon applying a Zeeman field (B ≠  0), the excitations can be further 
polarized, and can close the charge gap when the Zeeman energy gµBB is 
comparable to the gap ∆  (f). Purple shading denotes a spin-degenerate 
band, whereas blue and red shading denotes spin-up and spin-down 
bands, respectively. CNP, charge neutrality point. The shape of the DOS 
drawn here is purely illustrative and does not represent the actual DOS 
profile (see Extended Data Fig. 6 for a numerical result).
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The emergence of half-filling states is not expected in the absence of 
interactions between electrons and appears to be correlated with the 
narrow bandwidth near the first magic angle. In our experiment, sev-
eral separate pieces of evidence support the presence of flat bands. First, 
we measured the temperature dependence of the amplitude of 
Shubnikov–de Haas oscillations in device D1, from which we extracted 
the effective mass of the electron, m* (Fig. 3b; see Methods and 
Extended Data Fig. 3 for analysis). For a Dirac spectrum with eight-fold 
degeneracy (spin, valley and layer), we expect that ⁎= / πm h n v(8 )2

F
2 , 

which scales as 1/vF . The large measured m* near charge neutrality in 
device D1 indicates a reduction in vF by a factor of 25 compared to 
monolayer graphene (4 ×   104 m s− 1 compared to 106 m s− 1). This large 
reduction in the Fermi velocity is a characteristic that is expected for flat 
bands. Second, we analysed the capacitance data of device D2 near the 
Dirac point (Fig. 3a) and found that vF needs to be reduced to about 
0.15v0 for a good fit to the data (Methods, Extended Data Fig. 1b). Third, 
another direct manifestation of flat bands is the flattening of the con-
ductance minimum at charge neutrality above a temperature of 40 K 
(thermal energy kT =  3.5 meV), as seen in Fig. 3c. Although the con-
ductance minimum in monolayer graphene can be observed clearly even 
near room temperature, it is smeared out in magic-angle TBG when the 
thermal energy kT becomes comparable to vFkθ/2 ≈   4 meV—the energy 
scale that spans the Dirac-like portion of the band (Fig. 1c)24–26.

Owing to the localized nature of the electrons, a plausible explanation 
for the gapped behaviour at half-filling is the formation of a Mott-like 
insulator driven by Coulomb interactions between electrons27,28. To 
this end, we consider a Hubbard model on a triangular lattice, with 
each site corresponding to a localized region with AA stacking in the 
moiré pattern (Fig. 1i). In Fig. 3d we show the bandwidth of the E >   0 
branch of the low-energy bands for 0.04° <   θ <   2° that we calculated 
numerically using a continuum model of TBG6. The bandwidth W is 
strongly suppressed near the magic angles. The on-site Coulomb energy 
U of each site is estimated to be e2/(4π εd), where d is the effective linear 

dimension of each site (with the same length scale as the moiré period), 
ε is the effective dielectric constant including screening and e is the 
electron charge. Combining ε and the dependence of d on twist angle 
into a single constant κ, we write U =  e2θ/(4π ε0κa), where a =  0.246 nm 
is the lattice constant of monolayer graphene. In Fig. 3d we plot the 
on-site energy U versus θ for κ =  4–20. As a reference, κ =  4 if we 
assume ε =  10ε0 and d is 40% of the moiré wavelength. For a range of 
possible values of κ it is therefore reasonable that U/W >   1 occurs near 
the magic angles and results in half-filling Mott-like gaps27. However, 
the realistic scenario is much more complicated than these simplistic 
estimates; a complete understanding requires detailed theoretical anal-
yses of the interactions responsible for the correlated gaps.

The Shubnikov–de Haas oscillation frequency fSdH (Fig. 3b) also 
supports the existence of Mott-like correlated gaps at half-filling. Near 
the charge neutrality point, the oscillation frequency closely follows 
fSdH =  φ0| n| /M where φ0 =  h/e is the flux quantum and M =  4 indicates 
the spin and valley degeneracies. However, at | n|  >   ns/2, we observe 
oscillation frequencies that corresponds to straight lines, fSdH =  φ0(| n|   
−   ns/2)/M, in which M has a reduced value of 2. Moreover, these lines 
extrapolate to zero exactly at the densities of the half-filling states, n =   
±  ns/2. These oscillations point to small Fermi pockets that result from 
doping the half-filling states, which might originate from charged 
quasi particles near a Mott-like insulator phase29. The halved degener-
acy of the Fermi pockets might be related to the spin–charge separation 
that is predicted in a Mott insulator29. These results are also supported 
by Hall measurements at 0.3 K (Extended Data Fig. 4; see Methods for 
discussion), which show a ‘resetting’ of the Hall densities when the 
system is electrostatically doped beyond the Mott-like states.

The half-filling states at ±  ns/2 are suppressed by the application 
of a magnetic field. In Fig. 4a, b we show that both insulating phases 
start to conduct at a perpendicular field of B =  4 T and recover normal 
conductance by B =  8 T. A similar effect is observed for an in-plane 
magnetic field (Extended Data Fig. 5d). The insensitivity to field  
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Figure 2 | Half-filling insulating states in magic-angle TBG. a, Measured 
conductance G of magic-angle TBG device D1 with θ =  1.08° and 
T =  0.3 K. The Dirac point is located at n =  0. The lighter-shaded regions 
are superlattice gaps at carrier density n =  ±  ns =  ±  2.7 ×   1012 cm− 2. The 
darker-shaded regions denote half-filling states at ±  ns/2. The inset shows 
the density locations of half-filling states in the four different devices. 

See Methods for a definition of the error bars. b, Minimum conductance 
values in the p-side (red) and n-side (blue) half-filling states in device 
D1. The dashed lines are fits of exp[−  ∆ /(2kT)] to the data, where 
∆  ≈   0.31 meV is the thermal activation gap. c, d, Temperature-dependent 
conductance of D1 for temperatures from about 0.3 K (black) to 1.7 K 
(orange) near the p-side (c) and n-side (d) half-filling states.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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At |n|=2, 
conductance suddenly 
drops below T=4K

Commensurate 
density suggests
Mott physics

But… system only 
insulating at low T, 
easily destroyed by 
field, at lower T 
becomes SC…

A Bad Mott insulator?
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Figure 2 | Gate-tunable superconductivity in MA-TBG. (a) Two-probe 
conductance G2 = I/Vbias of device M1 measured in zero magnetic field 
(red trace) and at a perpendicular field of B⊥ = 0.4 T (blue trace). The 
traces show the typical “V”-shaped conductance near charge neutrality 
n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns, 
corresponding to filling ±4 electrons in each moiré unit cell, and the 
conductance reductions at intermediate integer fillings of the superlattice 
due to Coulomb interactions. Near -2e- per unit cell filling, there is a 
considerable conductance enhancement which is suppressed in B⊥ = 0.4 
T, signaling the onset of superconductivity. Measurements are taken 

at 70 mK. For these traces, Vbias = 10 µV. (b) Four-probe resistance Rxx 
measured at densities corresponding to the region bounded by pink 
dashed lines in (a), versus temperature. Two superconducting (SC) 
domes are clearly observed next to the half-filling state (“Mott”, centered 
around −ns/2 = -1.58×1012 cm-2). The remaining regions in the diagram 
are labeled as “Metal” due to the metallic temperature dependence. The 
highest critical temperature observed in device M1 is Tc=0.5 K (50% 
normal state resistance). (c) Similar plot as in (b) but measured in device 
M2, showing two asymmetric and overlapping domes. The highest critical 
temperature in this device is Tc=1.7 K.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Figure 3 | Magnetic field response of the superconducting states in 
MA-TBG. (a-b) Four-probe resistance as a function of density n and 
perpendicular magnetic field B⊥ in device M1 and M2 respectively. Apart 
from the similar dome structures around half-filling as in Fig. 2b-c,  
there are notably oscillatory features near the boundary between the 
superconducting phase and the correlated insulator phase. These 
oscillations can be understood as phase-coherent transport through 
inhomogeneous regions in the device (see Methods and Extended Data 

Fig. 1). (c) Differential resistance dVxx/dI versus dc bias current I for 
different B⊥ values, measured for device M2. (d) Rxx-T curves for different 
B⊥ values, measured for device M1. (e) Perpendicular and parallel critical 
magnetic field versus temperature for device M1 (50% normal state 
resistance). The fitting curves are plotted according to the corresponding 
formulas in Ginzburg-Landau theory for a 2D superconductor. 
Measurements in (a-c) are all taken at 70 mK.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Figure 4 | Temperature-density phase diagrams of MA-TBG at different 
magnetic fields. (a-c) Rxx-T curves for device M1 at different densities 
measured in B⊥=0, B⊥ = 0.4 T and Bperp = 8 T. The magnetic field induces 
a superconductor-insulator-metal transition at the lowest temperature. 

(d-f) Schematic phase diagrams corresponding to the magnetic fields in 
(a-c). The horizontal axis is the relative filling n/ns. Short color lines at the 
top and bottom of the plots denote the densities corresponding to those 
plotted in (a-c).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Ref: Cao et al, Nature 2018 (two papers)



Why is it so exciting?
A “clean” system with strong correlations

Easily tunable by gating

Comparison to cuprates

‘High’ Tc
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Figure 4 | Temperature-density phase diagrams of MA-TBG at different 
magnetic fields. (a-c) Rxx-T curves for device M1 at different densities 
measured in B⊥=0, B⊥ = 0.4 T and Bperp = 8 T. The magnetic field induces 
a superconductor-insulator-metal transition at the lowest temperature. 

(d-f) Schematic phase diagrams corresponding to the magnetic fields in 
(a-c). The horizontal axis is the relative filling n/ns. Short color lines at the 
top and bottom of the plots denote the densities corresponding to those 
plotted in (a-c).
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Figure 6 | Superconductivity in the strong-coupling limit. Log-log plot 
of Tc versus Fermi temperature TF for various superconductors.36 The top 
axis is the corresponding 2D carrier density n2D for 2D materials or n3D

2/3 
for 3D materials, normalized with effective mass m* and Fermi surface 
degeneracy g (and a constant factor for 3D density). 2D superconductors 
in this plot are represented by solid circular dots. ⁎= . /T ħ n m1 04BEC 2 3D  for 
a 3D bosonic gas is plotted for comparison. Bose-Einstein condensation 
temperatures in 4He, and paired fermionic 40K, and paired fermionic 6Li 

(both axes multiplied by 108 for the latter two) are shown as empty 
squares.36,47 The point for MA-TBG is calculated from the 2D density and 
effective mass obtained from quantum oscillations (Fig. 5d-e) at the 
optimal doping, n2D=1.5×1011 cm-2 and m* = 0.2m0, and using g = 1 
accounting for the halved degeneracy. Inset shows the variation of Tc/TF as 
a function of charge doping for MA-TBG. Data for other materials are 
either adapted from Uemura, et. al. or extracted from the literature.36–46

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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2019: More Domes & Fans
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Depending on electronic structure details, bands can have non-zero Chern numbers9,10, allowing for the 
possibility of orbital magnetism and anomalous Hall effects.  Gapped states at non-zero ! occur only 
when interactions are strong enough to shift band energies by more than the flat band width when they 
are occupied, otherwise they lead to semi-metallic states.  
 

Correlated states at all integer moiré filling factors 

 
 

Figure 1 | Integer-filling correlated states and new superconducting domes. a, Schematic of a 
typical hBN encapsulated MAG device with a graphite back gate. b, AFM image and four-probe 
measurement schematic, with the scale bar 2 µm. c, 4-terminal longitudinal resistance Rxx as a function 
of carrier density n at different perpendicular magnetic fields from 0T (black trace) to 480mT (red 
trace). d, Color plot of Rxx vs. n and T, showing different phases including metal, band insulator (BI), 
correlated state (CS) and superconducting state (SC). The boundaries of the superconducting domes 
indicated by yellow lines are defined by 50% resistance values relative to the normal state. Note that 
the metal-SC transition is not sharp at some carrier densities, adding uncertainty to the Tc extraction e, 
Longitudinal resistance Rxx at optimal doping of the superconducting domes as a function of tempera-
ture. The resistance is normalized to its value at 8K. f, Conductance Gxx vs. inverse temperature at n 
corresponding to ! = 0, 1, ±2 and 3. The straight lines are fits to ~ ./0 1−∆/2 !" activated behavior 
and give gap values of 0.35 meV (! = −2), 0.14 meV (! = 1), 0.37 meV (! = 2), 0.27 meV (! = 3) 
and 0.86 meV (CNP/ ! = 0). g, Mean-field phase diagram for neutral ! = 0 (CNP) twisted bilayer 
graphene, as a function of twist angle θ and interaction strength ε-1, showing differnet configurations of 
C2T symmetry and Chern number (C). 

 
Fig. 1a shows the typical device schematic of a graphite back-gated, hexagonal boron nitride (hBN) 
encapsulated MAG hetero-structure. Our stack was fabricated using a previously developed “tear and 
stack” technique28,29, followed by a mechanical squeezing process30. This process removes trapped blis-
ters, releases local strain, and achieves more homogenous interfaces between the layers. The stack was 

3 
 

Fig. 1. Resolving the local quantum Hall states in flat and dispersive bands in MATBG. (a) Experimental 
setup schematics with SOT scanning over MATBG (blue) encapsulated in hBN (light blue). Voltage !"#$% &
!"#'% is applied between the PdAu backgate and the grounded MATBG. Twist angle gradients () induce 
internal electric field and counterpropagating equilibrium QH currents *+,% and *%-. in incompressible 
(red) and compressible (blue) strips respectively, flowing along equi-) contours and measured by /0'%. 
(b) Calculated band structure with flat and dispersive bands. Blue and red represent the two valleys. (c) 
Zoomed-in /0'% peaks in the dispersive bands for device A at /' = 1.19 T, illustrating the procedure for 
determining the local 23 and the corresponding local ) (p-band data multiplied by minus sign for clarity). 
(d) Global 455 vs. electron density 26 and /' of device B showing insulating states at integer fillings, 
Landau fans and superconductivity. (e) 455(26) at /' = 1.08 T (dashed purple in (d)). (f) /0'% measured 
at a point in the bulk of device B vs. 26 at /' = 1.08 T. The sharp /0'% peaks reflect *+,% in incompressible 
strips with sign determined by 9:5, magnitude by LL energy gap, and separation by LL degeneracy (red 
bars). The dispersive bands are shaded in yellow, the signal in the flat bands is amplified 3 times, and the 
;-doped signal is multiplied by minus sign. 



Quantum Anomalous Hall Effect
In samples where the hBN substrate is aligned with the graphene, the 
substrate opens up a gap at charge neutrality.

The resulting band structure has opposite Chern numbers for different 
Dirac ‘valleys’

At n=3, interactions then cause ferromagnetic state

FM + Topology = QAH
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FIG. 1. Quantized anomalous Hall effect in twisted bilayer graphene (A) Longitudinal resistance Rxx and Hall resistance Rxy as a
function of carrier density n at 150 mT. Rxy reaches h/e2 and Rxx approaches zero near ⌫ = 3. Data are corrected for mixing of Rxx and
Rxy components by symmetrizing with respect to magnetic field at B = ±150 mT [30]. (B) Longitudinal resistance Rxx and Hall resistance
Rxy measured at n = 2.37⇥1012cm�2 as a function of B. Data are corrected for mixing using contact symmetrization[30]. Sweep directions
are indicated by arrows. (C) Hall resistance Rxy as a function of magnetic field B and density n. Hysteresis loop areas are shaded for clarity.
The rear wall shows field-training symmetrized values of Rxy at B = 0. Rxy(0) becomes nonzero when ferromagnetism appears, and reaches
a plateau of h/e2 near a density of n = 2.37⇥ 1012cm�2. (D) Schematic band structure at full filling of a moiré unit cell (⌫ = 4) and ⌫ = 3.
The net Chern number Cnet 6= 0 at ⌫ = 3.

of ⌫ 2 (2.84, 3.68) (see Fig. S9).
Fig. 1D shows a schematic representation of the band struc-

ture at full filling (⌫ = 4) and at ⌫ = 3. In the absence
of interaction-driven order, the spin-degenerate bands in each
valley have total Chern number ±2 (Fig. 1D). The observed
QAH state occurs because the exchange energy is minimized
when an excess valley- and spin-polarized Chern band[19, 20]
is occupied, spontaneously breaking time-reversal symmetry.
Magnetic order in two dimensions requires anisotropy. In
graphene, the vanishingly small spin orbit coupling provides
negligible anisotropy for the spin system. It is thus likely
that the observed magnetism is orbital, with strong, easy-
axis anisotropy arising from the two dimensional nature of the
graphene bands[19, 20, 27, 28, 33].

The phenomenology of ⌫ = 3 filling is nonuniversal across
devices: some samples are metallic[24, 25], some[27, 34]
show a robust, thermally activated trivial insulator while oth-
ers show an anomalous Hall effect[28]. This is consistent with
theoretical expectation[33] that the phase diagram at integer ⌫

is highly sensitive to model details which, in our experiment,
may be controlled by sample strain[35] and alignment to an
hBN encapsulant layer that breaks the C2 rotation symmetry
of tBLG[19, 20]. The prior report of magnetic hysteresis at
⌫ = 3 was indeed associated with close alignment of one of
the two hBN encapsulant layers[28], a feature shared by our
device[30]. Additional features of the transport phenomenol-
ogy presented here further suggest that the single particle band
structure of the device is significantly modified relative to un-
aligned tBLG devices, and suggest that hBN aligned samples
constitute a different class of tBLG devices with distinct phe-
nomenology. First, our device shows only a weakly resistive
feature at ⌫ = 2, but a robust thermally activated insulator
at charge neutrality. Remarkably, this ⌫ = 0 insulator has a
larger activation gap than even the states at ⌫ = ±4, which
are much smaller than typical[30]. Second, the quantum os-
cillations are highly anomalous, with hole-like quantum os-
cillations originating at ⌫ = 2, again in contrast to all prior
reports[24–27]. While no detailed theory for these observa-
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FIG. 1. Quantized anomalous Hall effect in twisted bilayer graphene (A) Longitudinal resistance Rxx and Hall resistance Rxy as a
function of carrier density n at 150 mT. Rxy reaches h/e2 and Rxx approaches zero near ⌫ = 3. Data are corrected for mixing of Rxx and
Rxy components by symmetrizing with respect to magnetic field at B = ±150 mT [30]. (B) Longitudinal resistance Rxx and Hall resistance
Rxy measured at n = 2.37⇥1012cm�2 as a function of B. Data are corrected for mixing using contact symmetrization[30]. Sweep directions
are indicated by arrows. (C) Hall resistance Rxy as a function of magnetic field B and density n. Hysteresis loop areas are shaded for clarity.
The rear wall shows field-training symmetrized values of Rxy at B = 0. Rxy(0) becomes nonzero when ferromagnetism appears, and reaches
a plateau of h/e2 near a density of n = 2.37⇥ 1012cm�2. (D) Schematic band structure at full filling of a moiré unit cell (⌫ = 4) and ⌫ = 3.
The net Chern number Cnet 6= 0 at ⌫ = 3.

of ⌫ 2 (2.84, 3.68) (see Fig. S9).
Fig. 1D shows a schematic representation of the band struc-

ture at full filling (⌫ = 4) and at ⌫ = 3. In the absence
of interaction-driven order, the spin-degenerate bands in each
valley have total Chern number ±2 (Fig. 1D). The observed
QAH state occurs because the exchange energy is minimized
when an excess valley- and spin-polarized Chern band[19, 20]
is occupied, spontaneously breaking time-reversal symmetry.
Magnetic order in two dimensions requires anisotropy. In
graphene, the vanishingly small spin orbit coupling provides
negligible anisotropy for the spin system. It is thus likely
that the observed magnetism is orbital, with strong, easy-
axis anisotropy arising from the two dimensional nature of the
graphene bands[19, 20, 27, 28, 33].

The phenomenology of ⌫ = 3 filling is nonuniversal across
devices: some samples are metallic[24, 25], some[27, 34]
show a robust, thermally activated trivial insulator while oth-
ers show an anomalous Hall effect[28]. This is consistent with
theoretical expectation[33] that the phase diagram at integer ⌫

is highly sensitive to model details which, in our experiment,
may be controlled by sample strain[35] and alignment to an
hBN encapsulant layer that breaks the C2 rotation symmetry
of tBLG[19, 20]. The prior report of magnetic hysteresis at
⌫ = 3 was indeed associated with close alignment of one of
the two hBN encapsulant layers[28], a feature shared by our
device[30]. Additional features of the transport phenomenol-
ogy presented here further suggest that the single particle band
structure of the device is significantly modified relative to un-
aligned tBLG devices, and suggest that hBN aligned samples
constitute a different class of tBLG devices with distinct phe-
nomenology. First, our device shows only a weakly resistive
feature at ⌫ = 2, but a robust thermally activated insulator
at charge neutrality. Remarkably, this ⌫ = 0 insulator has a
larger activation gap than even the states at ⌫ = ±4, which
are much smaller than typical[30]. Second, the quantum os-
cillations are highly anomalous, with hole-like quantum os-
cillations originating at ⌫ = 2, again in contrast to all prior
reports[24–27]. While no detailed theory for these observa-

Ref: Serlin, 1907.00261; Sharpe, 1901.03520; Bultinck, 1901.08110



Nematicity
Can locally measure the charge density by integrating STS spectra
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Figure 4. Broken C3 symmetry and charge-ordering. a-b, Large area dI/dV map for the 

LB (a) and UB (b) in the AA areas  at charge neutrality (Vg = 0V) (Vb = -300mV, I =70pA). 

c, Map of net charge obtain by the method described in the text and in Fig. 3c. Red 

corresponds to electron doping and blue to hole doping.  The four lobes superposed on each 

AA area mark the alternating sectors of electron (red) and hole (blue) doping.  

 

 

  

Figure 3. Spatial charge modulation in the correlated phase. a, STM topography in 

a 10x10nm2 area centered on an AA region (Vb = -200mV, I =20pA). The red circle 

labels the AA region. b, dI/dV map over the same area as panel a for the LB (left panel) 

and UB (right panel) at Vg = 0V  (10x10nm2, Vb = -200mV, I =50pA). c, Map of the net 

charge obtained by the method described in the text. Red corresponds to electron doping 

and blue to hole doping. The four dashed lobes mark the sectors of alternating electron 

(e) and hole (h) doping. d, Spatial dependence of  dI/dV curves along the colored arrow 

in a and c  shows the spectral weight shift between the LB and UB with position. e, 

Gate voltage dependence of filling fraction (symbols) within the flat band extracted 

from Fig. 2c. The dotted line shows the gate dependence of the filling fraction, Q, 

obtained from the gate voltage as described in the text and SI. f, Position dependence 

of filling fraction from d  along the path indicated by the arrow in c. The filling fraction 

was obtained from the relative area under the LB peak as discussed in the text.  

 

 

  

Figure 2. Doping dependence of dI/dV spectra. a, Gate voltage (filling fraction) 

dependence of the dI/dV intensity at the Fermi level shows clear dips at fillings fractions of  

1,4/3,2/1,4/10 rrrr ，Q . Here + (-) correspond to the electron (hole) doped sectors 

respectively. b, Color map of gate voltage dependent dI/dV spectra in the AA region 

highlighting the doping induced spectral shift between the LB and UB. The dashed line marks 

the charge neutrality point. Vb = -300mV, I = 20pA. c,  Gate voltage dependence of dI/dV 

spectra taken at the center of an AA domain close to charge neutrality. The curves (offset for 

clarity), correspond to doping ranging from −0.86 × 1012𝑐𝑚−2  (Vg = –12V) to 0.86 ×

1012𝑐𝑚−2 (Vg = +12V). The spectral weight shift between the LB and UB with doping is 

clearly seen. d, DMFT simulation of local DOS projected to the AA-centered local functions 

at different filling fractions as discussed in  the text.  

 

Ref: Jiang, 1904.10153
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FIG. 3. Planckian scattering in magic-angle bilayer graphene. a, Resistivity as a function of temperature for device MA2 (✓ = 1.050) near
⌫ = �2 for gate-tuned densities �1.85 ⇥ 1012 cm�2 (blue) to �1.00 ⇥ 1012 cm�2 (red). The correlated insulator at ⌫ = �2 is approximately
located near �1.3 ⇥ 1012 cm�2. The range of fillings is shown using the horizontal colorbar near ⌫ = �2 in Fig.1a. The solid smooth lines have
been obtained by using a gaussian-weighted filter. b, Slope of resistivity as a function of filling above 8 K for the same device evaluated using
a linear fit. The inset shows the coe�cient C of the scattering rate � = CkBT/~ for the same fillings as in Fig. 3b, respectively.

crossover.

In light of these results, any successful theory has to ac-
count for the following universal aspects of the phenomenol-
ogy: (i) a T�linear resistivity with values O(h/e2) in the vicin-
ity of commensurate fillings, ⌫ = ±2, with near Planckian
(C ⇠ O(1)) “scattering rates”, (ii) a weak dependence of the
slope of the resistivity on ⌫, (iii) relative insensitivity of the
resistivity to TF and by extension, to the underlying details of
the Fermi-surface at low temperatures, and (iv) the presence
of a small Tcoh above which the transport is unconventional.
Since Tcoh can be as low as 0.5 K in some of our devices, it
will be interesting to see if future experiments find evidence
of T�linear resistivity down to even lower temperatures (i.e.
Tcoh ! 0). If so, it is possible that the NFL behavior in
MABLG is controlled by a T = 0 quantum critical point or
quantum critical phase. On the other hand, if Tcoh is non-zero,
it is likely that the metallic regime of MABLG for fillings
near ⌫ = ±2 realizes an intermediate-scale NFL. Assuming
that the temperature remains smaller than the typical interac-
tion strengths but large compared to Tcoh, the state is neither a
classical liquid (or gas) nor a degenerate quantum liquid. The
system can then be best described as a “semi-quantum” liq-
uid, with no coherent quasiparticle excitations and no sharply
defined Fermi surface. Describing such a regime in a theoret-
ically controlled limit is challenging but recent progress has
been made in the study of some models [13, 31] which find
evidence of such incoherent behavior. Guided by these stud-
ies and by the present experiments we will further develop

microscopic theories of transport in such a regime elsewhere.

Slope (A)
Material 3D: µ⌦ cm / K C Refs.

2D: ⌦ / K

CeCoIn5 1.6 1 [14]
CeRu2Si2 0.91 1.1 [14]

3D (TMTSF)2PF6 0.38 0.9 [14]
(11.8 kbar)
UPt3 1.1 1.1 [14]
Cu (T > 100 K) 7 ⇥ 10�3 1.0 [14]
Au (T > 100 K) 8.4 ⇥ 10�3 0.96 [14]
Bi2212 (p = 0.22) 8.0 1.1 [15]
LSCO (p = 0.26) 8.2 0.9 [15]

(Quasi-)2D PCCO (x = 0.17) 1.7 1.0 [15]
MLG on SiO2 0.1 0.01 � 0.02 [26], This work
MABLG 100 � 300 0.2 � 1.6 This work

TABLE I: Materials exhibiting Planckian scattering rates (�),
where � = CkBT/~.
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FIG. 2. T�linear resistivity near ⌫ = ±2 in MABLG. a, Resistivity (⇢) as a function of temperature for device MA3 (✓ = 1.020) and MA4
(✓ = 1.160) at a gate-tuned density of �1.46 ⇥ 1012 cm�2 (⌫ = �2 � �) and 1.19 ⇥ 1012 cm�2 (⌫ = 2 � �), respectively. The inset shows ⇢(T )
in ohms for MLG on SiO2 (green) and hBN (blue), respectively (data from [26, 27]). b, The slopes A = d⇢/dT obtained at the fillings near
⌫ = ±2 ± � with optimal superconducting Tc for six di↵erent devices (MA1 - MA6) as a function of respective twist-angles. Orange (cyan)
markers denote fillings with ⌫ > 0 (⌫ < 0), while solid (empty) symbols denote deviations, � > 0 (� < 0), away from the correlated insulators
at ⌫ = ±2. The inset shows the extrapolated resistivity, ⇢0, for the same devices. c, ⇢(T ) for device MA4 near ⌫ = �1/2 for gate-induced
densities �0.51 to �0.29 ⇥ 1012 cm�2. The data look similar near ⌫ = +1/2. The inset shows ⇢(T ) for the same device near ⌫ = 0 and densities
between ±0.13 ⇥ 1012 cm�2. d, ⇢(T ) for device MA4 near ⌫ = �3/2 for gate-induced densities �1.28 to �1.08 ⇥ 1012 cm�2. The inset shows
⇢(T ) for device MA4 near ⌫ = +3/2 over a symmetric range of densities.

pression [14, 15], such that

C =
~

kB

e
2

nc(0)
m⇤(0)

A, (1)

where nc(0), m
⇤(0) are the measured density and e↵ective

mass values at low temperatures, T ! 0. This expression
gives an operational definition of C, and hence of the scatter-
ing rate �. In device MA2, we have also been able to extract
the actual low-T carrier density (nc(0)) and e↵ective mass
(m⇤(0)) from Shubnikov-de Haas (SdH) quantum oscillations
measurements [17]. Note that nc(0), as inferred from SdH

measurements, is not simply proportional to ⌫ everywhere in
the phase-diagram. Instead for ⌫ = �2 � �, nc(0) corresponds
to the gate-induced density relative to the correlated insulator
at ⌫ = �2[17]. On the other hand, for ⌫ = �2 + �, nc(0)
corresponds to the gate-induced density relative to charge-
neutrality at ⌫ = 0 [17], in agreement with low-temperature
Hall measurements. From the SdH measurements, we can es-
timate the Fermi-temperature, TF = 2⇡~2

nc(0)/(kBgm
⇤(0)),

where g is the degeneracy factor. Interestingly, ⇢(T ) does not
exhibit any characteristic changes or crossovers as the tem-

At |n|=2, the 
temperature 
regime above the 
Bad Mott insulator 
displays linear T 
resistivity

Prefactor of 
relaxation time is 
order one, is it 
Planckian 
dissipation? 
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Goal: a simple model
Full lattice model is challenging: >11,000 bands

To include interactions, need a simplified model
of local Wannier orbitals

Compare to getting square lattice Hubbard 
model out of the cuprates
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3
Fermionic models of correlated bilayers

Many properties of an exciton condensate can be deduced by considering the phenomen-
ological Ginzburg-Landau free energy. However, to find specific susceptibilities that match
experiments we need a microscopic model, starting with the basic constituents of a correlated
bilayer: electrons, holes, and their interactions.

We introduce the fermionic Hubbard model, a remarkably elegant model that still
torments many theoretical physicists. Within the mean field theory picture it is easy to
discover exciton condensation, as demonstrated in section 3.2. However, the cuprate family
that we study has strong interactions and mean-field theory is at best uncontrolled, and at
worst completely wrong. We therefore perform a numerical study using the Determinant
Quantum Monte Carlo approach, with limitations rooted in the fermion sign problem.

U

t

Figure 3.1: In the tight bind-
ing approximation the elec-
tron states are given by orbit-
als on an ionic lattice. The
dynamics of the electrons is
described by the Hubbard
model, with hopping t and
an onsite repulsion U.

3.1 The Hubbard model and its problems
A good introduction into the
Hubbard model can be found
in Zaanen, 1996 and Imada
et al., 1998.

Many metals and alloys such as the cuprates are crystalline solids,
for which most electronic properties can be derived using the
tight-binding approximation. There one assumes that the electron
wavefunctions are still atomic orbitals and electrons can ‘hop’ from

wm(r) =

Z

BZ
dk Uk

mn  nk(r)
<latexit sha1_base64="v9mIYGMhVKy7CXo1+1KGmgieabw="></latexit>



Symmetries

Less symmetry if rotating somewhere else

More symmetry in continuum model: 
in particular Valley symmetry
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G1

G2AA

AB

BA

Coulomb energy and the exchange energy between elec-
trons residing at different orbitals. The obtained Wannier
state is centered at the AB or BA spot, while we find that its
maximum amplitude is not at the center but at three AA
spots surrounding the center, as also noticed in Ref. [5].
Importantly, the pair ofWannier orbitals that we constructed
explicitly has ðpx; pyÞ on-site symmetry and hence forms a
doublet under threefold rotation around their centers,
consistent with the symmetry analysis [4].
Because of this peculiar three-peak form, the electron-

electron interaction between the neighboring sites is as
important as the on-site interaction term. At the filling of
two electrons per supercell, in particular, we find an
unexpected coincidence in the direct Coulomb energy
between two different many-body states: a homogeneous
state where an electron enters every sublattice of the
effective honeycomb lattice and a charge-ordered state
where two electrons reside at every two sublattices
[Figs. 7(a) and 7(b)]. We expect that such competing nature
would possibly give rise to a nontrivial many-body
ground state.
This paper is organized as follows: In Sec. II, we explain

the atomic structure of TBG, and in Sec. III, we introduce
the effective continuum model and argue the structure
of the nearly flat bands at the magic angle θ ¼ 1.05°. In
Sec. IV, we construct the Wannier orbitals using the
maximally localizing method, and we obtain the tight-
binding model in Sec. V. We consider the electron-electron
interaction between the Wannier states in Sec. VI. A brief
conclusion is presented in Sec. VII.

II. ATOMIC STRUCTURE

We define the atomic structure of TBG by starting from
AA-stacked bilayer graphene (i.e., perfectly overlapping
honeycomb lattices) and rotating layers 1 and 2 around a
pair of registered B sites by −θ=2 and þ θ=2, respectively.
We define a1 ¼ að1; 0Þ and a2 ¼ að1=2;

ffiffiffi
3

p
=2Þ as the

lattice vectors of the initial AA-stacked bilayer before the
rotation, where a ≈ 0.246 nm is the lattice constant of
graphene. The corresponding reciprocal lattice vectors are
a%1 ¼ ð2π=aÞð1;−1=

ffiffiffi
3

p
Þ and a%2 ¼ ð2π=aÞð0; 2=

ffiffiffi
3

p
Þ. After

the rotation, the lattice vectors of layer l are given by
aðlÞi ¼ Rð∓ θ=2Þai, with ∓ for l ¼ 1, 2, respectively,
where RðθÞ represents the rotation by θ. Likewise, the
reciprocal lattice vectors become a%ðlÞi ¼ Rð∓ θ=2Þa%i .
With respect to the registered B sites, TBG has point group
D3 generated by a threefold in-plane rotation C3z along the
z axis and a twofold rotation C2y along the y axis.
In a small angle TBG, the slight mismatch of the lattice

periods of two layers gives rise to a long-period moiré
interference pattern. The reciprocal lattice vectors for the
moiré pattern are given by GM

i ¼ a%ð1Þi − a%ð2Þi ði ¼ 1; 2Þ.
The real-space lattice vectors LM

j can then be obtained

from GM
i ·LM

j ¼ 2πδij. A moiré unit cell is spanned by
LM

1 and LM
2 . The lattice constant LM ¼ jLM

1 j ¼ jLM
2 j is

LM ¼ a=½2 sinðθ=2Þ'. Figure 1(a) illustrates the atomic
structure of TBG with θ ¼ 3.89°. The lattice structure
locally resembles the regular stacking such as AA, AB, or
BA, depending on the position, where AA represents the
perfect overlapping of hexagons, and AB (BA) is the
shifted configuration in which the A1ðB1Þ sublattice is
right above B2ðA2Þ. In Fig. 1(a), AA spots are located at the
crossing points of the grid lines, and AB and BA spots are
at the centers of triangles indicated by dots. Figure 1(b)
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FIG. 1. (a) Atomic structure of TBG with θ ¼ 3.89° and D3

symmetry. AA spots are located at the crossing points of the grid
lines, and AB and BA spots are at the centers of triangles
indicated by dots. (b) Brillouin zone folding in TBG with
θ ¼ 3.89°. Two large hexagons represent the first Brillouin zones
of graphene layers 1 and 2, and the small hexagon is the moiré
Brillouin zone of TBG.
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Start with AA stacked bilayer 
and rotate in hexagon center: 
D6, D3, C2 symmetries

Wei’s 
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“Fragile” topology
Topological insulator cannot be transformed into an atomic insulator

In monolayer graphene, Dirac cone have sublattice chirality

In single valley in twisted bilayers both cones have the same chirality!

It cannot be described by an atomic orbitals, even though it doesn’t 
have a topological index

16Ref: Zou, 1806.07873; Po, 1709.06551
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Way out: nonlocal orbitals
Construct Wannier orbitals that are non-local: ‘fidget spinners’

But interactions are insane: 
up to 5th nearest neighbor are
comparable in energy!
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panels show the contour maps for the squared amplitudes of
the total wave function and of the four sublattice compo-
nents. We actually see that orbitals 1 and 2 are centered at
the BA and AB positions, respectively, while the maxima of
the wave amplitudes are located not at the center but near
three AA spots surrounding the center. This reflects the fact
that the Bloch wave functions of the nearly flat bands are
mostly localized AA spots of the moiré pattern [25,41].
The lower panels illustrate the phase of the envelope

function FXlðrÞ (X ¼ A, B and l ¼ 1, 2) on some sample
points, where the total wave function is ψXlðrÞ ¼
eiK

ðlÞ
ξ ·rFXlðrÞ. Here, the absolute value of FXlðrÞ is indicated

by the radius of a circle, and its phase factor is shown by the
direction of the bar and also by color. Now, we see that the
envelope functions on different sublattices have different
eigenvalues of C0

3z, in-plane rotation with respect to its own
center. However, noting that the Bloch factor eiKξ·r also
carries a nonzero eigenvalue of C0

3z, the total wave function
ψ ¼ ðψA1 ;ψB1 ;ψA2 ;ψB2Þ is found to be an eigenstate ofC0

3z
with a single eigenvalue. In orbital 1, for example, the C0

3z
eigenvalue of FXl is ðω; 1; 1;ω$Þ for ðA1; B1; A2; B2Þ, so the
angular momentum of the envelope function is written as
LðenvÞ
z ¼ ð−1; 0; 0; 1Þ. On the other hand, theC0

3z eigenvalue
for the Bloch factoreiKξ·r can be found by noting that the BA
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FIG. 3. Maximally localized Wannier orbitals of the valley ξ ¼ þ , in the low-energy flat band of TBG with θ ¼ 1.05°. For both
orbitals 1 and 2, the top five panels show the contour maps for the squared amplitudes of the total wave function and of the four sublattice
components. The lower panels illustrate the phase of the envelope function on some sample points, where the amplitude is indicated by
the radius of a circle, and its phase factor is shown by the direction of the bar and also by color.
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3z, the total wave function
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consistent with the degeneracy described above. The Bloch
states at the center of the MBZ Γ are doubly degenerate; the
energy difference between the two pairs defines the (narrow)
bandwidth. The doublets are the two-dimensional represen-
tations (E) of the groupD3 [5]. Using ϵ to represent the phase
factor ϵ ¼ expði2π=3Þ [23], we choose the two components
of each doublet to transform as the eigenstates ofC3 with the
eigenvalues of either ϵ or ϵ$, and label the four Bloch states at
Γ as ψΓ;E% ;ϵ% 1 . Here, E% refers to the doublet with higher
(lower) energy, and ϵ% 1 refers to the component of the
doublet which has the eigenvalue of ϵ (ϵ$) under C3. While
the two components of each doublet are the eigenstates ofC3,
they transform into each other under C0

2 and the TRS. We
wish to stress that there is no simple transformation which
relates the two doublets at different energy, i.e., ψΓ;E% . This
fact can be seen in Figs. 3(a) and 3(b)where jψΓj2 are plotted.

III. WANNIER STATES

Our next step is to construct the localized WSs by
applying the projection method [21]. For this purpose, it is
necessary that the four bands are separated by a gap from
all others. The experiments of Refs. [1,2] determined that
the closest simple commensurate values are m ¼ 30 and
n¼ 31. However, the four bands produced by Eq. (1) are
gapped only near the band maximum, not near the band
minimum; this is also seen in Ref. [1] Fig. 1. Such a
connection with the bands below contradicts the exper-
imental finding that the four bands of interest are separated
from either side by insulating states [1]. Therefore, we
construct the WSs for the case ofm ¼ 25 andn¼ 26 (with
the twist angle θ ¼ 1.30°); the four bands are then separated
by a gap on both sides. We expect that the values of the
hopping parameters of the low-energy Hamiltonian at the

magic angle to be almost the same, and, importantly, can be
fine-tuned to it by slight modification. We confirm that the
quadratic band touching at K, which can be taken to be the
defining property of the magic angle, can be realized in
such a way.

A. Symmetry of the Wannier states

As mentioned, it is crucial to identify the positions of the
WSs. One naive choice is to place centers of all four states
on the triangular moiré superlattice sites. With this option,
the WSs transform as

gjwi;Ri ¼
X

j

jwj;gRiUjiðgÞ; ð2Þ

where i; j ¼ 1;…; 4 are the indices of the WSs, R is the
position of the triangular superlattice site, and g is the
symmetry operation. The Bloch state ψ i;k is the linear
superposition of the WSs. Under the same symmetry
operation g, we find

gjψ i;ki ¼ g
X

R

eik·Rjwi;Ri ¼
X

R

eik·Rjwj;gRiUjiðgÞ

¼
X

R

eigk·gRjwj;gRiUjiðgÞ ¼ jψ j;gkiUjiðgÞ: ð3Þ

It is interesting to study the special case when the
momentum is symmetry invariant, i.e., Γ and K in the
MBZ. We immediately conclude that the Bloch states
should transform as UðgÞ, and, therefore, the Bloch states
should transform in the same way at Γ and K. As we point
out, the four Bloch states transform as two doublets at Γ
and one doublet and two singlets at K. This proves that the

FIG. 3. (a),(b) The square of the magnitude of the Bloch states jψΓ;Eþ ;ϵj
2 and jψΓ;E−;ϵj

2 and (c) the localization of the WSs obtained
from the projected method. The four panels show jw1j2 at (upper left) the top layer sublattice A, (upper right) the top layer sublattice B,
(lower left) the bottom layer sublattice A, and (lower right) the bottom layer sublattice B.
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numerical calculation of hopping integrals. The nonzero
t̃3 ≡ Reðt3Þ, t4, t5 terms preserve both G and g and
quantitatively modify the band structure of the minimum
model (9). In fact, including t1 to t5, we have m−1

e;h¼
3ðt̃3−3t̃2Þ∓ j12t1 þ 2t4 þ 7t5j and v¼ð

ffiffiffi
3

p
=2Þjt1−2t4−t5j,

where me;h denote effective masses at the Γ̄ point on the
electron and hole sides, respectively, and v is the Fermi
velocity at the K̄, K̄0 points.
We can also incorporate the effect of intervalley coupling

in the effective tight-binding model by introducing U(1)-
breaking hopping terms such as those in Ref. [4], which
may explain Landau-level-degeneracy lifting in experi-
ments. A detailed analysis of Dirac nodes and mass
generation will be presented in a forthcoming work.

VI. ELECTRON-ELECTRON INTERACTION

We can calculate the electron-electron interaction param-
eters between the Wannier orbitals directly from the wave
functions obtained above. The direct Coulomb interaction
V and the exchange interaction J between jR; mi and
jR0; m0i are defined by

VR0m0;Rm ¼
X

XX0

ZZ
drdr0jψX0

R0m0ðr0Þj2
e2

ϵjr − r0j
jψX

RmðrÞj2;

ð10Þ

JR0m0;Rm ¼
X

XX0

ZZ
drdr0

× ψX0%
R0m0ðr0ÞψX%

RmðrÞ
e2

ϵjr − r0j
ψX
R0m0ðrÞψX0

Rmðr0Þ;

ð11Þ

where ϵ is the dielectric constant induced by the electrons in
other bands and by the external environment (e.g., the
substrate). The direct term is the classical Coulomb
interaction, and it works for any combination of spin
and valley. On the other hand, the exchange interaction
works only for the same spin and the same valley.
Rigorously speaking, the exchange term between different
valleys (and the same spin) is not exactly zero, but there, the
integral of eiðKþ −K−Þ·ðr−r0Þ=jr − r0j in Eq. (11) becomes
much smaller than that for the same valley, so we neglect it.
We label the direct interaction terms at different distances

as V0; V1; V2… as in Fig. 6(a), where V0 is the on-site
interaction, V1 is the nearest-neighbor interaction, and so
forth. Similarly, the exchange terms can be labeled as
J1; J2…, where J0 does not exist because of the Pauli
principle. The calculated interaction parameters are listed in
Table I. Here, we notice that the on-site interaction V0 is not
much greater than others, but it has a similar magnitude as
the nearest-neighbor interaction V1. The further inter-
actions V2 and V3 are more than half of V0. This case

is quite different from the usual Hubbard-type models
where V0 dominates the interaction effect. The peculiar
distance dependence of the Coulomb interaction in this
model is closely related to the three-peak structure of the

(b)

(a)

V0 V1

V2 V3

V0

V1

V2
V3

V5 V4

x 

y 

LM

LM

x 

y 

AB (orbital 2) BA (orbital 1)

FIG. 6. (a) Labeling of the direct Coulomb interaction at
different distances. Note that V0; V1; V2… represent the potential
amplitudes between the origin and the indicated lattice points.
(b) Overlapping of two Wannier orbitals in the configuration V0,
V1, V2, V3. The three circles of the same line type represent the
three peaks of a single Wannier state (Fig. 3).

TABLE I. Direct interaction Vn and the exchange interactionJn
for the Wannier orbitals in units of e2=ðϵLMÞ. The definition of
V0; V1… is presented in Fig. 6(a). Here, VðapproxÞ

n is the direct
interaction term estimated by the point-charge approximation
(see the text).

n 0 1 2 3 4 5

Vn 1.857 1.533 1.145 1.068 0.697 0.614
VðapproxÞ
n

1.857 1.524 1.136 1.081 0.679 0.610
Jn N=A 0.376 0.0645 0.010 0.014 0.001
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Way out: more orbitals
You can also include more orbitals to circumvent the non-locality of the 
Wannier functions

Note: for Mott localization some symmetry agnosticism is useful
Band symmetries are not necessarily respected by the Mott state!
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of Ĥ(t,0) is shown in Fig. 2a, and it can be readily interpreted
as a slight dressing of the bonding/ anti-bonding picture.

Importantly, by construction the band structure of Ĥ(t,0)
includes two exactly flat bands pinned at zero energy (Fig. 2d;
see also Appendix B), whose symmetry representations must
match those of the nearly flat bands in TBG. Very briefly,
these flat bands exist here for the same geometric reason as
that of the Lieb lattice [47]. In addition, we have chosen the
wave function parameters a-d, listed in the caption of Fig. 2,
to reproduce the broad energetic features of the higher-energy
bands of TBG. Note that our model reproduces the approx-
imate Ek = −E−k particle-hole symmetry of the higher en-
ergy states in TBG, although this is not a good symmetry of
the nearly flat bands. With all the key properties built-in, we
simply choose V̂ such that Ĥ(t0,1) faithfully captures the en-
ergetics of the ten bands near charge neutrality in TBG. This
leads to the band structure shown in Fig. 2b, which closely
resembles that computed using the continuum theory of TBG
(Fig. 2c). In particular, the two bands near charge neutrality
in Fig. 2e touches only at the Dirac points pinned at K and K’,
just like that from the continuum theory (Fig. 2f). As they fur-
nish the targeted symmetry representations in Table I, from the
results in Ref. 29 they must display both the mirror and chi-
rality Wannier obstructions, i.e., this ten-band model serves as
an explicit resolution of all the known Wannier obstructions of
the nearly flat bands of TBG.
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K -K -M M K
-4

-2

0

2

4

(a) (b) (c)

(d) (e) (f )
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K -K -M M K

-200

-100

0

100

200

K -K -M M K

FIG. 2. Band structures. (a,b) Bands from the ten-band Hamiltonian
Ĥ(t0, �). For both panels, we choose t0 ≡ 130 meV, and the wave-
function parameters (a, b, c, d) = (0.110,0.033,0.033,0.573). We
set � = 0 in (a) and 1 in (b). (c) Bands obtained from the continuum
theory [4, 12] for twisted bilayer graphene with a twist angle of ✓ =
1.05○, using the parameters described in Ref. 41. The ten bands
around charge neutrality are highlighted. (d-f) A zoom-in of the two
bands at charge neutrality for the corresponding panels in (a-c). The
three-dimensional plots in (e,f) are plotted over the first Brillouin
zone centered at �, showing the presence of exactly two Dirac points
pinned to K and K′ = −K. Note that (e) is generated from our tight-
binding model, whereas (f) is generated from the continuum model.

B. A six-band model

As the dominant term in the ten-band model in Eq. (3) can
be viewed as a minimal coupling between the ⌘ and h de-
grees of freedom, one could imagine the consequences of “in-
tegrating out” the ⌘ fermions, which results in a low-energy
theory described in terms of the h degrees of freedom. In
our band-theory context, such a procedure can be done simply
by adding an arbitrarily large chemical potential to ⌘, which
amounts to removing the four ⌘ bands from the Hilbert space.
The leads to a six-band low-energy Hilbert space with the or-
bital content on the left-hand side of Eq. (1), but with the dom-
inant kinetic term involving only the four bands arising from
the h quasi-orbitals, i.e., there will again be two nearly flat
bands near zero-energy.

(a) (c)

(b)

K -K -M M K

-200

-150

-100

-50

0

K -K -M M K
-200

-100

0

FIG. 3. Band structures from a six-band model. (a) Color code for
the orbital characters. (b) The broad energetic features can be set up
using only the intra-orbital dispersion. (c) Band structure from the
full model, with parameters detailed in Appendix B 1.

While the preceding picture explains the existence of a six-
band model, it is also desirable to construct such a model in a
more conventional manner in terms of mostly nearest neigh-
bor bonds. We will undertake this task below. Recall that
the electron density of the nearly flat bands in TBG is local-
ized to the “AA” regions, which form a triangular lattice at the
moiré scale [5, 6, 11, 16, 20–22]. This suggests a tight-binding
model with two orbitals placed on the triangular site. To cap-
ture the existence of Dirac points at K and K’, these orbitals
should be p±, and naturally we anticipate the nearly flat bands
to overlap strongly with the (⌧, p±) orbitals in most of the
Brillouin zone. However, the (⌧, p±) bands feature an addi-
tional quadratic touching4 at the Gamma point, which cancels
the Dirac-point chirality. In contrast, in TBG the two nearly
flat bands are non-degenerate at �, and so the (⌧, p±) bands
alone are incapable of capturing the �-point behavior [28, 39].
Therefore, we expect strong hybridization between the other
orbitals in the vicinity of �, such that the wave function of the
two nearly flat bands correspond to the singlet representations
in (⌧, pz) and (, s).

Based on the above picture, we construct a six-band model
which captures all the salient feature of TBG, as we show in
Fig. 3 and elaborate on in Appendix B 1.

4 which could split into multiple Dirac cones when trigonal warping is in-
corporated

Ref: Po, 1808.02482; Haule, 1901.09852



Real-space structure
The main question is: 

What is the real-space structure of the orbitals?

First observation: density of states at charge-neutrality is peaked at AA

19



Flat bands
Look at the whole band structure

Using tight-binding model

In-plane: nearest neighbor hopping

Interlayer hopping 
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Zoom-in around charge neutrality:

Bandwidth of 11.25 meV

Double degenerate at K

Almost double degenerate at M and Γ

Bandgap towards other bands



States at charge neutrality
The states at K and K’ are localized at 

AA stacking centers of the unit cell

Notice that there are 4 ‘center’ orbitals
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ABBA



States at the flat band edge
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Κ-orbitals

Γ-orbitals
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However, at the 
Gamma point, the 
wavefunctions vanish
at the AA centers.

They form a 
ring-like structure!



Mixed-orbital flat bands
Effective model should include this hybridization

‘Center’ orbitals hop on honeycomb lattice

‘Ring’ orbitals hop on triangular lattice
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f�(k) = 2 (cosa1 · k+ cosa2 · k+ cosa3 · k)
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x 2

tK� = 4.7meV
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Coulomb interactions
Coulomb repulsion is long-range and quite strong in graphene

(Wehling PRL 2011)

Two physical effects:

- Hubbard U - depends on the orbital

- Unequal charge distribution
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V (ri � rj) =
1.438

0.116 + |ri � rj |
eV
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Z
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Z
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490 meV for center orbital
Localization!



Hartree: Set-up
The idea is to decouple density-density interactions

introducing Hartree fields f

Solved this self-consistently for different doping levels (from n=-4 to 0)

(Note that we do not include Fock corrections.                   ) 
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HH =
X

i

�n(~ri)�i
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�i =
X

j

V (~ri � ~rj)h�n(~rj)i
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hcjc†i ic
†
jci
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Charge transfer

Depending on the electron 
density, have a macroscopic 
charge imbalance between 
AA and AB/BA

Leads to large electric fields
that are reduced by Hartree-
Fock self-energy
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Renormalized bandstructure
Charge transfer from center to ring causes 
states at G pushed up in energy

Band flattening, mostly at |n|=2

And the Van Hove singularity in STS is 
pinned to Fermi level
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Speculations on n=2
Need to add Hubbard U on top of renormalized bands

But… U is typically on the order of or larger than band-gap!
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Two dispersive bands

Charge neutrality
Two flat bands

Band gap�b
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If                 ,
energy is lower by 
occupying one flat band 
and one dispersive band

U > �b
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Speculations on n=2 (cont.)
Localized (flat band) electrons hybridized with conducting (dispersive 
band) electrons: this is a Kondo lattice system!

Very low T implies very subtle energy competition – future work…
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Resistivity minimum 
associated with

formation of the 
Kondo singlet



Summary
Twisted bilayer graphene is an interesting 
interacting material

Challenge to find effective low-energy model
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There are ring and center orbitals in the full tight-binding
model

Interactions favor a charge-transfer from center to ring at
Hartree-level

Renormalized band-structure still needs Hubbard interactions,    
still work in progress


