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and the Fermi level lies near one of them. However, it
has been argued that some low-energy excitations dis-
play differences between the Mott-Hubbard and CT
types (Emery, 1987; Varma, Schmitt-Rink, and Abra-
hams, 1987). With a decrease in D, the MIT may occur
even at half-filling. This is probably the reason why Ni
compounds become more metallic when one changes
the ligand atom from oxygen, sulfur to selenium.

Low-energy excitations of the Mott insulating phase
in transition-metal compounds are governed by the
Kramers-Anderson superexchange interaction, in which
only collective excitations of spin degrees of freedom
are vital (Kramers, 1934; Anderson, 1963a, 1963b). The
second-order perturbation in terms of t/U in the Hub-
bard model, as in Figs. 4(b) and 4(c), or the fourth-order
perturbation in terms of tpd /u´d2´pu or tpd /Udd in the
d-p model yield the spin-1/2 Heisenberg model at half
band filling of d electrons:
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for the d-p model. The exchange between two d orbit-
als, 1 and 2, in the presence of the ligand p orbital 3, is
indeed derived from the direct exchange between the d
orbital 1 and the neighboring p orbital 3, which is hy-
bridized with the other d orbital 2 or vice versa. This
generates a ‘‘superexchange’’ between 1 and 2 in the
order shown above (Anderson, 1959). Even for doped
systems, a second-order perturbation in terms of t/U in
the Hubbard model leads to the so-called t-J model
(Chao, Spalek, and Oles, 1977; Hirsch, 1985a; Anderson,
1987),
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where Pd is a projection operator to exclude the double
occupancy of particles at the same site. To derive Eq.
(2.13), we neglect the so-called three-site term given by
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from the assumption that the basic physics may be the
same. However, this is a controversial issue, since it ap-
pears to make a substantial difference in spectral prop-
erties (Eskes et al., 1994) and superconducting instability
(Assaad, Imada, and Scalapino, 1997). It was stressed
that the t-J model (2.13) represents an effective Hamil-
tonian of the d-p model (2.11a) by extracting the singlet
nature of a doped p hole and a localized d hole coupled
with it (Zhang and Rice, 1988). Of course, for highly
doped system far away from the Mott insulator, it is
questionable whether Eq. (2.13) with doping-
independent J can be justified as the effective Hamil-
tonian.

B. Variety of metal-insulator transitions
and correlated metals

In order to discuss various aspects of correlated met-
als, insulators, and the MIT observed in d-electron sys-
tems, it is important first to classify and distinguish sev-
eral different types. To understand anomalous features
in recent experiments, we must keep in mind the impor-
tant parameter, dimensionality. We should also keep in
mind that both spin and orbital degrees of freedom play
crucial roles in determining the character of the transi-
tion. Metal-insulator transitions may be broadly classi-
fied according to the presence or the absence of symme-
try breaking in the component degrees of freedom on
both the insulating and the metallic side, because differ-
ent types of broken-symmetry states cannot be adiabati-
cally connected. Here we employ the term ‘‘component’’
to represent both spin and orbital degrees of freedom in
d-electron systems. Symmetry breaking in Mott insula-
tors as well as in metals is due to the multiplicity of the
particle components. For example, for antiferromagnetic
order, the symmetry of multiple spin degrees of freedom
is broken.

FIG. 5. Schematic illustration of energy levels for (a) a Mott-
Hubbard insulator and (b) a charge-transfer insulator gener-
ated by the d-site interaction effect.
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Van der Waals heterostructures
A. K. Geim1,2 & I. V. Grigorieva1

Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading
topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic
planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The
first, already remarkably complex, such heterostructures (often referred to as ‘van der Waals’) have recently been
fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging
research area and identify possible future directions. With steady improvement in fabrication techniques and using
graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.

G raphene research has evolved into a vast field with approxi-
mately ten thousand papers now being published every year
on awide range of graphene-related topics. Each topic is covered

by many reviews. It is probably fair to say that research on ‘simple
graphene’ has already passed its zenith. Indeed, the focus has shifted
from studying graphene itself to the use of the material in applications1

and as a versatile platform for investigation of various phenomena.
Nonetheless, the fundamental science of graphene remains far from
being exhausted (especially in terms of many-body physics) and, as
the quality of graphene devices continues to improve2–5, more break-
throughs are expected, although at a slower pace.
Because most of the ‘low-hanging graphene fruits’ have already been

harvested, researchers have now started paying more attention to other
two-dimensional (2D) atomic crystals6 such as isolated monolayers and
few-layer crystals of hexagonal boron nitride (hBN), molybdenum
disulphide (MoS2), other dichalcogenides and layered oxides. During
the first five years of the graphene boom, there appeared only a few

experimental papers on 2D crystals other than graphene, whereas the
last two years have already seen many reviews (for example, refs 7–11).
This research promises to reach the same intensity as that on graphene,
especially if the electronic quality of 2D crystals such asMoS2 (refs 12, 13)
can be improved by a factor of ten to a hundred.
In parallel with the efforts on graphene-like materials, another

research field has recently emerged and has been gaining strength over
the past two years. It deals with heterostructures and devices made by
stacking different 2D crystals on top of each other. The basic principle is
simple: take, for example, a monolayer, put it on top of another mono-
layer or few-layer crystal, add another 2D crystal and so on. The resulting
stack represents an artificialmaterial assembled in a chosen sequence—as
in building with Lego—with blocks defined with one-atomic-plane pre-
cision (Fig. 1). Strong covalent bonds provide in-plane stability of 2D
crystals, whereas relatively weak, van-der-Waals-like forces are sufficient
to keep the stack together. The possibility of making multilayer van
der Waals heterostructures has been demonstrated experimentally only

1School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK. 2Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester M13 9PL, UK.

Graphene

hBN

MoS2

WSe2

Fluorographene

Figure 1 | Building van der Waals
heterostructures. If one considers
2D crystals to be analogous to Lego
blocks (right panel), the construction
of a huge variety of layered structures
becomes possible. Conceptually, this
atomic-scale Lego resembles
molecular beam epitaxy but employs
different ‘construction’ rules and a
distinct set of materials.
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Van der Waals heterostructures: Atomic ‘LEGO’ Moiré pattern
Twist or Lattice mismatch
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Monolayer graphene

Dirac cone dispersion
of massless electrons
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superconducting dome region of magic-angle TBG36. Most uncon-
ventional superconductors have Tc/TF values of about 0.01–0.05, 
whereas all of the conventional BCS superconductors lie on the 
far right in the plot, with much smaller ratios. Magic-angle TBG is 
located above the trend line on which most cuprates, heavy-fermion 
and organic superconductors lie, with a Tc/TF value approaching that 
of the recently observed exotic FeSe monolayer on SrTiO3 (Fig. 6 
inset). This finding strongly suggests that the superconductivity in 
magic-angle TBG originates from electron correlations instead of 
weak electron–phonon coupling. One other frequently compared 
temperature is the Bose–Einstein condensation temperature for a 
three-dimensional boson gas TBEC, assuming that all particles in the 
occupied Fermi sea pair up and condense. Cuprates and other uncon-
ventional superconductors typically have Tc/TBEC ratios of roughly 
0.1–0.2. The Tc/TBEC ratio for magic-angle TBG is estimated to be 
up to 0.37, indicating very strong electron–electron interactions and 
possibly close proximity to the BCS–BEC crossover. This behaviour 
is in agreement with the fact that the coherence length in magic-angle 
TBG (ξ ≈ 50 nm at optimal doping) is of the same order of magnitude 
as the average inter-particle distance, (n′)−1/2 ≈ 26 nm.

The realization of unconventional superconductivity in a graphene 
superlattice establishes magic-angle TBG as a relatively simple, clean, 
accessible and, most importantly, highly tunable material, which could 
be used to study correlated electron physics. The interactions in magic- 
angle TBG could possibly be further fine-tuned by the twist angle and 
by the application of perpendicular electric fields by means of differ-
ential gating18,37. Moreover, Tc could possibly be enhanced further by 
applying pressure to the graphene superlattice to increase the interlayer 

hybridization or by coupling different magic-angle TBG structures to 
induce Josephson coupling in the vertical direction38. Similar magic- 
angle superlattices and flat-band electronic structures could also be 
realized with other two-dimensional materials or lattices to investigate 
strongly correlated systems with different properties.

Finally, despite several apparent similarities between magic-angle 
TBG and cuprates, there are key differences between the realizations 
of them. First, the valley degree of freedom in the underlying graphene 
lattices leads to an extra degeneracy, resulting in two carriers per 
superlattice unit cell at half-filling in the parent correlated insulator 
state. Higher quality devices and fine tuning may lead to supercon-
ductivity near the regions corresponding to one and three carriers per 
unit cell. Second, in magic-angle TBG the underlying superlattice is 
triangular, which should have a fundamental influence on the type of 
spin-singlet ground state it can host, owing to magnetic frustration. 
The lattice symmetry should also impose limitations on the possible 
superconducting pairing symmetry in magic-angle TBG; further 
experiments, for example, involving tunnelling and Josephson hetero-
junctions, are required to confirm this39. Various pairing symmetries, 
including (d + id′)-wave, (px + ipy)-wave and spin-triplet s-wave  
symmetries, have been predicted theoretically in the hypothetical 
superconductivity of monolayer or few-layer graphene40–42. If the 
mechanism for superconductivity in magic-angle TBG is indeed 
related to the correlated half-filling insulating state, as is the case in 

−dx y2 2-wave cuprates, then the pairing symmetry might be chiral 
(d + id′)-wave, to satisfy the underlying triangular symmetry of the 
superlattice. We anticipate that further experimental and theoretical 
work on magic-angle TBG and related magic-angle superlattices will 
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Figure 6 | Superconductivity in the strong-coupling limit. Logarithmic 
plot of critical temperature Tc versus Fermi temperature TF for various 
superconductors36. The top axis is the corresponding two-dimensional 
carrier density n2D for two-dimensional materials or /n3D

2 3 for three-
dimensional materials, normalized by the effective mass m*/me and the 
Fermi surface degeneracy g (and a constant factor of 1/1.52 for the three-
dimensional density). Two-dimensional superconductors are represented 
by filled circles; other symbols represent three-dimensional (but 
potentially two-dimensional-like) superconductors. For comparison, we 
also plot TBEC = 1.04ħn3D/m* for a three-dimensional bosonic gas (dashed 
line). Bose–Einstein condensation temperatures in 4He, paired fermionic 
40K and paired fermionic 6Li are shown as open pink squares36,44 (Tc and TF 
have both been multiplied by 108 for 40K and 6Li). The point for magic-

angle TBG (large red filled circle) is calculated from the two-dimensional 
density and the effective mass obtained from quantum oscillations  
(Fig. 5d, e) at the optimal doping (n2D = 1.5 × 1011 cm−2 and m* = 0.2me), 
using g = 1 to account for the halved degeneracy. Data for other materials 
are from refs 36,45–54. The blue shaded region is the approximate region 
in which almost all known unconventional superconductors lie. The inset 
shows the variation in Tc/TF as a function of doping n′ for magic-angle 
TBG (red filled circles). The horizontal dashed lines are the approximate 
Tc/TF values of the corresponding material. YBCO, YBa2Cu3O7−δ; LSCO, 
La2−xSrxCuO4; BSCCO, Bi2Sr2Ca2Cu3Oy; LAO, LaAlO3; STO, SrTiO3;  
1L, single layer; EDLT, electric double-layer transistor; BEDT, 
bisethylenedithiol; TMTSF, tetramethyltetraselenafulvalene.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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proximity effects. The carrier density n is tuned by applying a voltage 
to a Pd/Au bottom gate electrode. In Fig. 1b we show the longitudi-
nal resistance Rxx as a function of temperature for two magic-angle 
devices, M1 and M2, with twist angles of 1.16° and 1.05°, respectively. 
At the lowest temperature studied of 70 mK, both devices show zero 
resistance, and therefore a superconducting state. The critical temper-
ature Tc as calculated using a resistance of 50% of the ‘normal’-state 
(non-superconducting) value is approximately 1.7 K and 0.5 K for the 
two devices that we studied in detail. In Fig. 1c, d we show a single- 
particle band structure and density of states (DOS) near the charge 
neutrality point calculated for θ = 1.05°. The superconductivity in both 
devices occurs when the Fermi energy EF is tuned away from charge 
neutrality (EF = 0) to be near half-filling of the lower flat band (EF < 0, 
as indicated in Fig. 1d). The DOS within the energy scale of the flat 
bands is more than three orders of magnitudes higher than that of 
two uncoupled graphene sheets, owing to the reduction of the Fermi 
velocity and the increase in localization that occurs near the magic 
angle. However, the energy at which the DOS peaks does not gener-
ally coincide with the density that is required to half-fill the bands. 
In addition, we did not observe any appreciable superconductivity 
when the Fermi energy was tuned into the flat conduction bands 
(EF > 0). In Fig. 1e we show the current–voltage (I–Vxx, where Vxx 
is the four-probe voltage, as defined in Fig. 1a) curves of device M2 
at different temperatures. We observe typical behaviour for a two- 
dimensional superconductor. The inset shows a tentative fit of the 
same data to a Vxx ∝ I3 power law, as is predicted in a Berezinskii–
Kosterlitz–Thouless transition in two-dimensional superconductors23. 
This analysis yields a Berezinskii–Kosterlitz–Thouless transition tem-
perature of TBKT ≈ 1.0 K at n = −1.44 × 1012 cm−2, where, as before, 

n is the carrier density induced by the gate and measured from the 
charge neutrality point (which is different from the actual carrier  
density involved in transport, as we show below).

In contrast to other known two-dimensional and layered super-
conductors, the superconductivity in magic-angle TBG requires the 
application of only a small gate voltage, corresponding to a minimal 
density of only 1.2 × 1012 cm−2 from charge neutrality, an order of mag-
nitude lower than the value of 1.5 × 1013 cm−2 in LaAlO3/SrTiO3 inter-
faces and of 7 × 1013 cm−2 in electrochemically doped MoS2, among 
others24. Therefore, gate-tunable superconductivity can be realized 
in a high-mobility system without the need for ionic-liquid gating or 
chemical doping. In Fig. 2a we show the two-probe conductance of 
device M1 versus n at zero magnetic field and at a 0.4-T perpendic-
ular magnetic field. Near the charge neutrality point (n = 0), a typical 
V-shaped conductance is observed, which originates from the renor-
malized Dirac cones of the TBG band structure. The insulating states 
centred at approximately ±3.2 × 1012 cm−2 (which corresponds to ns 
for θ = 1.16°) are due to single-particle bandgaps in the band structure 
that correspond to filling ±4 electrons in each superlattice unit cell. In 
between, there are conductance minima at ±2 and ±3 electrons per 
unit cell. These minima are associated with many-body gaps induced by 
the competition between the Coulomb energy and the reduced kinetic 
energy due to confinement of the electronic state in the superlattice 
near the magic angle; these gaps give rise to insulating behaviour near 
the integer fillings18. One possible mechanism for the gaps is similar 
to the gap mechanism in Mott insulators, but with an extra two-fold 
degeneracy (for the case of ±2 electrons) from the valleys in the origi-
nal graphene Brillouin zone17,18,25,26. In the vicinity of −2 electrons 
per unit cell (n ≈ −1.3 × 1012 cm−2 to n ≈ −1.9 × 1012 cm−2) and at a 
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Figure 2 | Gate-tunable superconductivity in magic-angle TBG. 
a, Two-probe conductance G2 = I/Vbias of device M1 (θ = 1.16°) measured 
in zero magnetic field (red) and at a perpendicular field of B⊥ = 0.4 T 
(blue). The curves exhibit the typical V-shaped conductance near charge 
neutrality (n = 0, vertical purple dotted line) and insulating states at the 
superlattice bandgaps n = ±ns, which correspond to filling ±4 electrons 
in each moiré unit cell (blue and red bars). They also exhibit reduced 
conductance at intermediate integer fillings of the superlattice owing to 
Coulomb interactions (other coloured bars). Near a filling of −2 electrons 
per unit cell, there is considerable conductance enhancement at zero field 
that is suppressed in B⊥ = 0.4 T. This enhancement signals the onset of 

superconductivity. Measurements were conducted at 70 mK; Vbias = 10 µV. 
b, Four-probe resistance Rxx, measured at densities corresponding to 
the region bounded by pink dashed lines in a, versus temperature. Two 
superconducting domes are observed next to the half-filling state, which 
is labelled ‘Mott’ and centred around −ns/2 = −1.58 × 1012 cm−2. The 
remaining regions in the diagram are labelled as ‘metal’ owing to the 
metallic temperature dependence. The highest critical temperature 
observed in device M1 is Tc = 0.5 K (at 50% of the normal-state resistance). 
c, As in b, but for device M2, showing two asymmetric and overlapping 
domes. The highest critical temperature in this device is Tc = 1.7 K.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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FIG. 1. Quantized anomalous Hall effect in twisted bilayer graphene (A) Longitudinal resistance Rxx and Hall resistance Rxy as a
function of carrier density n at 150 mT. Rxy reaches h/e2 and Rxx approaches zero near ⌫ = 3. Data are corrected for mixing of Rxx and
Rxy components by symmetrizing with respect to magnetic field at B = ±150 mT [30]. (B) Longitudinal resistance Rxx and Hall resistance
Rxy measured at n = 2.37⇥1012cm�2 as a function of B. Data are corrected for mixing using contact symmetrization[30]. Sweep directions
are indicated by arrows. (C) Hall resistance Rxy as a function of magnetic field B and density n. Hysteresis loop areas are shaded for clarity.
The rear wall shows field-training symmetrized values of Rxy at B = 0. Rxy(0) becomes nonzero when ferromagnetism appears, and reaches
a plateau of h/e2 near a density of n = 2.37⇥ 1012cm�2. (D) Schematic band structure at full filling of a moiré unit cell (⌫ = 4) and ⌫ = 3.
The net Chern number Cnet 6= 0 at ⌫ = 3.

of ⌫ 2 (2.84, 3.68) (see Fig. S9).
Fig. 1D shows a schematic representation of the band struc-

ture at full filling (⌫ = 4) and at ⌫ = 3. In the absence
of interaction-driven order, the spin-degenerate bands in each
valley have total Chern number ±2 (Fig. 1D). The observed
QAH state occurs because the exchange energy is minimized
when an excess valley- and spin-polarized Chern band[19, 20]
is occupied, spontaneously breaking time-reversal symmetry.
Magnetic order in two dimensions requires anisotropy. In
graphene, the vanishingly small spin orbit coupling provides
negligible anisotropy for the spin system. It is thus likely
that the observed magnetism is orbital, with strong, easy-
axis anisotropy arising from the two dimensional nature of the
graphene bands[19, 20, 27, 28, 33].

The phenomenology of ⌫ = 3 filling is nonuniversal across
devices: some samples are metallic[24, 25], some[27, 34]
show a robust, thermally activated trivial insulator while oth-
ers show an anomalous Hall effect[28]. This is consistent with
theoretical expectation[33] that the phase diagram at integer ⌫

is highly sensitive to model details which, in our experiment,
may be controlled by sample strain[35] and alignment to an
hBN encapsulant layer that breaks the C2 rotation symmetry
of tBLG[19, 20]. The prior report of magnetic hysteresis at
⌫ = 3 was indeed associated with close alignment of one of
the two hBN encapsulant layers[28], a feature shared by our
device[30]. Additional features of the transport phenomenol-
ogy presented here further suggest that the single particle band
structure of the device is significantly modified relative to un-
aligned tBLG devices, and suggest that hBN aligned samples
constitute a different class of tBLG devices with distinct phe-
nomenology. First, our device shows only a weakly resistive
feature at ⌫ = 2, but a robust thermally activated insulator
at charge neutrality. Remarkably, this ⌫ = 0 insulator has a
larger activation gap than even the states at ⌫ = ±4, which
are much smaller than typical[30]. Second, the quantum os-
cillations are highly anomalous, with hole-like quantum os-
cillations originating at ⌫ = 2, again in contrast to all prior
reports[24–27]. While no detailed theory for these observa-
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FIG. 1. Quantized anomalous Hall effect in twisted bilayer graphene (A) Longitudinal resistance Rxx and Hall resistance Rxy as a
function of carrier density n at 150 mT. Rxy reaches h/e2 and Rxx approaches zero near ⌫ = 3. Data are corrected for mixing of Rxx and
Rxy components by symmetrizing with respect to magnetic field at B = ±150 mT [30]. (B) Longitudinal resistance Rxx and Hall resistance
Rxy measured at n = 2.37⇥1012cm�2 as a function of B. Data are corrected for mixing using contact symmetrization[30]. Sweep directions
are indicated by arrows. (C) Hall resistance Rxy as a function of magnetic field B and density n. Hysteresis loop areas are shaded for clarity.
The rear wall shows field-training symmetrized values of Rxy at B = 0. Rxy(0) becomes nonzero when ferromagnetism appears, and reaches
a plateau of h/e2 near a density of n = 2.37⇥ 1012cm�2. (D) Schematic band structure at full filling of a moiré unit cell (⌫ = 4) and ⌫ = 3.
The net Chern number Cnet 6= 0 at ⌫ = 3.

of ⌫ 2 (2.84, 3.68) (see Fig. S9).
Fig. 1D shows a schematic representation of the band struc-

ture at full filling (⌫ = 4) and at ⌫ = 3. In the absence
of interaction-driven order, the spin-degenerate bands in each
valley have total Chern number ±2 (Fig. 1D). The observed
QAH state occurs because the exchange energy is minimized
when an excess valley- and spin-polarized Chern band[19, 20]
is occupied, spontaneously breaking time-reversal symmetry.
Magnetic order in two dimensions requires anisotropy. In
graphene, the vanishingly small spin orbit coupling provides
negligible anisotropy for the spin system. It is thus likely
that the observed magnetism is orbital, with strong, easy-
axis anisotropy arising from the two dimensional nature of the
graphene bands[19, 20, 27, 28, 33].

The phenomenology of ⌫ = 3 filling is nonuniversal across
devices: some samples are metallic[24, 25], some[27, 34]
show a robust, thermally activated trivial insulator while oth-
ers show an anomalous Hall effect[28]. This is consistent with
theoretical expectation[33] that the phase diagram at integer ⌫

is highly sensitive to model details which, in our experiment,
may be controlled by sample strain[35] and alignment to an
hBN encapsulant layer that breaks the C2 rotation symmetry
of tBLG[19, 20]. The prior report of magnetic hysteresis at
⌫ = 3 was indeed associated with close alignment of one of
the two hBN encapsulant layers[28], a feature shared by our
device[30]. Additional features of the transport phenomenol-
ogy presented here further suggest that the single particle band
structure of the device is significantly modified relative to un-
aligned tBLG devices, and suggest that hBN aligned samples
constitute a different class of tBLG devices with distinct phe-
nomenology. First, our device shows only a weakly resistive
feature at ⌫ = 2, but a robust thermally activated insulator
at charge neutrality. Remarkably, this ⌫ = 0 insulator has a
larger activation gap than even the states at ⌫ = ±4, which
are much smaller than typical[30]. Second, the quantum os-
cillations are highly anomalous, with hole-like quantum os-
cillations originating at ⌫ = 2, again in contrast to all prior
reports[24–27]. While no detailed theory for these observa-

Ref: Serlin Science ’20; Jaoui Nat Phys ‘22

Quantum Anomalous Hall effect Strange metal
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Tight-binding picture of tBG?

3
Fermionic models of correlated bilayers

Many properties of an exciton condensate can be deduced by considering the phenomen-
ological Ginzburg-Landau free energy. However, to find specific susceptibilities that match
experiments we need a microscopic model, starting with the basic constituents of a correlated
bilayer: electrons, holes, and their interactions.

We introduce the fermionic Hubbard model, a remarkably elegant model that still
torments many theoretical physicists. Within the mean field theory picture it is easy to
discover exciton condensation, as demonstrated in section 3.2. However, the cuprate family
that we study has strong interactions and mean-field theory is at best uncontrolled, and at
worst completely wrong. We therefore perform a numerical study using the Determinant
Quantum Monte Carlo approach, with limitations rooted in the fermion sign problem.

U

t

Figure 3.1: In the tight bind-
ing approximation the elec-
tron states are given by orbit-
als on an ionic lattice. The
dynamics of the electrons is
described by the Hubbard
model, with hopping t and
an onsite repulsion U.

3.1 The Hubbard model and its problems
A good introduction into the
Hubbard model can be found
in Zaanen, 1996 and Imada
et al., 1998.

Many metals and alloys such as the cuprates are crystalline solids,
for which most electronic properties can be derived using the
tight-binding approximation. There one assumes that the electron
wavefunctions are still atomic orbitals and electrons can ‘hop’ from

AA
AB

BA ?



Density of states at K is peaked at AA

Γ Μ Κ Γ
-0.02

-0.01

0.00

0.01

0.02

k

E
(e
V)

Density of states at G is peaked at unit cell edge

Multi-orbital picture

Ref: Rademaker, Mellado, PRB 2018; PRB 2019; Song Bernevig PRL 2022
9/22



10/22

Charge-transfer in tBG (weak coupling)

Ref: Rademaker, Mellado, PRB 2018; PRB 2019; Choi Nat Phys 2021
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Figure 1 | Filling-dependent band structure deformation of TBG at twist angle ✓ = 1.32°.
a, Device schematics and a TBG surface topography. TBG is placed on a monolayer WSe2, thin
hBN layer and graphite back gate. A bias voltage VBias is applied through a graphite contact
placed on top. Blue and yellow circles respectively indicate AA- and AB/BA-stacked regions in
the TBG moiré pattern (tunneling set point parameters: VBias = 100 mV, I = 20 pA). b, Point
spectroscopy at B = 0 T near the CNP taken at an AA and an AB site; AA sites show large LDOS
peaks corresponding to VHSs. c, Tunneling conductance (dI/dV) spectroscopy on an AB site as
a function of VGate at a magnetic field of B = 7 T (T = 2 K) showing the evolution of LLs with
electrostatic doping. The LLs originating from � and  pockets (�LLs and LLs) of the flat bands
as well LLs from remote bands (rLLs) are identified. The energy separation between different LLs,
as marked by black lines, changes with VGate. See SI, section 2, for conversion between VGate and
⌫. d, Linecuts of data in (c) at VGate = 4 V, 1 V, -5 V further illustrate the LL spectrum and its
change with electrostatic doping. e, Calculated TBG band structure with Hartree corrections for
✓ = 1.32° and B = 0 T. Electron doping flattens the conduction band while hole doping flattens
the valence band. f, Calculated density of states with Hartree corrections as a function of filling for
B = 7 T (see SI, sections 4 and 5). g, Measured energy separation between �LL0 and �LL1 as a
function of filling factor showing conductance (valence) band flattening for electron (hole) doping.

11

Need both localized (K, center) and delocalized (G, ring) orbitals to describe tBG

Hartree-Fock: charge-transfer causes reduction of effective bandwidth
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Charge-transfer in tBG (strong coupling)

Ref: Song Bernevig PRL 2022; Datta Bascones 2301.13024; Zondiner Nature 2020

206 | Nature | Vol 582 | 11 June 2020

Article

exhibiting asymmetric sawtooth features with sharp jumps of dµ/dn. 
Moreover, dµ/dn becomes negative before all integer fillings of the con-
duction flat band32, a clear signature of strong electronic interactions.

The systematic B|| dependence of dµ/dn at θ = 1.05° is shown in Fig. 3a. 
dµ/dn hardly changes with B|| around the CNP, but exhibits an even–odd 
dependence around integer fillings: at even fillings the sawtooth weakens 
(ν = −2) or hardly changes (ν = 2) with B||, whereas at odd fillings (ν = 1, 3) it 
strengthens with B||. This reflects alternating spin polarizations as integer 
fillings are crossed, consistent with previous transport observations3–6.

The prominent magnetic-field dependence of the sawtooth feature 
around ν = 1 allows us to study its energetics more closely. Figure 3b 
shows µ as a function of ν for various B||. At every ν, µ depends approxi-
mately linearly on B||, but with a different slope (Fig. 3b, top inset). By 
Maxwell’s relation we know that dM||/dn ≡ −dµ/dB||, thus these measure-
ments allow us to determine the differential magnetization, dM||/dn, 
directly. Figure 3b, bottom inset, plots dM||/dn as a function of ν for 
θ = 1.05° and 0.99°. At θ = 1.05°, dM||/dn is nearly zero over a finite range 
around ν = 0, then rises slowly with ν, and near ν = 1 rapidly increases to 
dM||/dn ≈ (4.5 ± 0.3)µB, followed by a sharp drop to near zero (here µB 
is the Bohr magneton). This large dM||/dn indicates a rapid build-up of 
magnetization near ν = 1. The linear B|| dependence of µ, observed to the 
lowest B|| (Fig. 3b, top inset), suggests that the system has spontaneous 
magnetization near and above ν = 1. In contrast, for θ = 0.99° we see 
that dM||/dn ≈ 0 throughout the entire filling factor range (see also Sup-
plementary Information section 8), emphasizing that the emergence 
of flavour symmetry breaking and magnetization near ν = 1 depends 
sensitively on the proximity of θ to the MA.

Finally, we show the temperature dependence of dµ/dn in Fig. 3c. 
The sawtooth features remain strong even at the highest temperature 

achievable in our scanning setup, T = 16 K, and extrapolate to zero at 
T ≈ 30 K (Supplementary Information section 12), seven times higher 
than the temperatures where insulating behaviour commences in trans-
port measurements3,5,6,33,34. Independently, we estimate the energy 
scale associated with the Dirac revivals from the measured depth of the 
kinks in µ (Fig. 2d), obtaining ∆µ ≈ 4 mV. This substantially exceeds the 
activation energies measured in transport3,5,6, which were associated 
with correlated gaps, but is comparable to the scale over which ‘strange 
metal’ behaviour was observed in transport33,34. This suggests that the 
Dirac revivals underlie the high-energy correlated state of this system.

These robust features of the compressibility call for a theoretical 
understanding. Many features of our data are captured surprisingly well 
within a simple model that includes certain key elements but ignores 
many details of the complex electronic structure of the flat moiré bands. 
A typical calculated band structure (Fig. 4a) shows a strong asymmetry 
of the conduction and valence flat bands around their centres, evolving 
from a Dirac-like density of states (DOS) at the CNP to a massive DOS 
near the band edges. We believe that two features of this band structure 
are responsible for the observed behaviour: the strong dependence 
of the DOS on filling, and its inherent asymmetry about the centre 
of the conduction (or valence) band. We capture these features in a 
stripped-down model, which replaces the DOS by a linear function 
that terminates abruptly at the band edges (Fig. 4a, right). We assume 
a contact repulsive interaction, which is independent of the spin/valley 
flavour index, and solve the model within the Hartree–Fock approxima-
tion, allowing for spin/valley symmetry breaking via an unequal popu-
lation of different flavours (see Supplementary Information sections 
10, 15 for details and a discussion of the applicability and limitations 
of these approximations).
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Fig. 3 | Dependence of the asymmetric sawtooth features at θ = 1.05° on 
parallel magnetic field and temperature. a, Parallel field dependence: shown 
is dµ/dn measured in sample A as a function of filling factor around ν = −2, 0, 1, 2, 
3 (left to right) at various values of B|| and T = 50 mK. (Grey lines indicate shadow 
sawtooth-like features arising from nearby domains with smaller twist angles 
that are also detected by the SET owing to its finite spatial resolution.) b, µ as a 
function of ν for various values of B|| obtained by integrating the measured  
dµ/dn; µ is referenced to the chemical potential at the CNP, µCNP. Top inset, µ as a 
function of B|| at selected values of ν (green, red, blue and grey dashed lines in 

main panel). Bottom inset, the differential magnetization dM||/dn ≡ −dµ/dB|| 
(extracted from a linear fit to the B|| dependence of µ at each ν) as a function of ν 
measured at θ = 1.05° (red) and 0.99° (blue). However, for θ = 0.99°, dM||/dn 
remains practically zero throughout, it peaks sharply near ν = 1 for θ = 1.05°, 
reaching a value of (4.5 ± 0.3)µB, signifying the build-up of spontaneous 
magnetization that starts around this peak. c, Temperature dependence:  
the measured dµ/dn is shown as a function of ν at various temperatures,  
T, at B|| = 12 T.

3

FIG. 2. Asymmetric peaks in the inverse compressibility and in the DOS. (a) DOS at the Fermi level as a function
of doping, showing asymmetric minima at integer fillings within �2 < ⌫ < 2, except at CNP, where it is symmetric. (b)
Local inverse compressibility versus doping with strongly asymmetric peaks. Their shapes strongly resemble the ones in SET
measurements [17]. Here µlocal is the chemical potential which enters in the DMFT calculation, see Supplementary Figure
6. (c) Inverse of the DOS at the Fermi level shown in (a) with asymmetric peaks similar to the ones in the local inverse
compressibility. (d) Density of states for several dopings close to ⌫ = �2. All calculations done at T = 6 K.

U = 44.5 meV, which is larger than the gap between the flat and remote bands � = 22 meV. Calculations are done
at T = 6 K, except otherwise stated, and we do not allow states with spontaneous symmetry breaking. See Methods
and Supplementary Figure 1 for further details.

RESULTS

The DOS in Figure 1b displays a strong energy ! and doping ⌫ dependence with resets of spectral weight and
minima at the Fermi level, ! = 0, at integer dopings, Fig. 2a. In spite of the narrow bandwidth of the flat bands
in the non-interacting model, 1 meV at M and 8 meV at �, Figure 1a and Supplementary Figure 1c), an important
reorganization of the spectral weight is visible in Figure 1b within a range of 50 meV around the Fermi level. This
spectral weight appears in the form of cascades at positive and negative energies flowing from ! ⇡ ±U (red arrows
in Figure 1) towards ! = 0. For hole doping the spectral weight in the cascade at positive energies is larger than
at negative energies and it increases with doping. This positive energy cascade forms at energy U around a given
integer doping and gets very close to ! = 0 at the next smaller integer doping. The negative energy cascade is
shifted in doping with respect to the one at positive energies and reaches ! = 0 at intermediate fillings. The ⌫
and ! dependence of the cascades is reversed for electron-hole doping. At the CNP (⌫ = 0) the cascades anticross.
The cascade flow can also be seen in the line plots within �0.5 < ⌫ < 2 in Figure 1c. The three peak structure
of the DOS observed in a wide range of dopings, with bumps at positive and negative energies and a quasiparticle
peak at zero energy, is common in strongly correlated systems [31]. The broad peaks emerging around U , marked
with a red arrow in Figure 1b and 1c and formed by incoherent spectral weight, constitute the Hubbard bands of the
correlated AAp orbitals, which account for most of the spectral weight of the flat bands. Their unconventional cascade
flow is due to their hybridization and interaction with the lc orbitals, present at � of the flat bands (Supplementary

Experiments: cascade in inverse compressibility Charge-transfer between localized and itinerant?
“topological heavy Fermion”?
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Outlook in tBG

AA
AB

BA

• Still debate on the correct effective tight-
binding model

• Definitely not “rigid band-shift” model

• Need this to understand SC and strange 
metal

• Key role for charge-transfer!
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More moiré in TMDs

Ref: Rademaker PRB 2022; Xu Nature 2020

216 | Nature | Vol 587 | 12 November 2020
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bands in the sensor and will not be focused on here. The emergence of 
the enhanced 2s exciton indicates reduced screening and opening of a 
charge gap in the sample. The strongest 2s exciton is observed around 
0 V when the sample is charge neutral. The bandgap of the superlattice 
is by far the largest energy gap in the system. The next few fillings in 
descending order of the 2s exciton strength are |v| = 1, |v| = 2, |v| = 1/3 
and |v| = 2/3. These states have been recently reported in hole-doped 
WSe2/WS2 moiré superlattices with the same energy ordering6,7. They 
correspond to a Mott insulator (v = 1), moiré band insulator (v = 2) 
and generalized Wigner crystals (v = 1/3 and v = 2/3). Our result shows 
that these strong insulating states occur on both electron-filled and 
hole-filled superlattices, and there are many weaker insulating states, 
particularly, at fractional fillings.

We refine the gate voltage–filling factor conversion by using the 
established insulating states as landmarks and assuming a linear 
dependence for the electron and hole side independently (Extended 
Data Fig. 2). The two conversion factors are practically identical. The 
filling factor of the remaining insulating states is determined from the 
measured Vg as the closest rational number with a small denominator 
(Methods). We plot the 2s exciton resonance energy for all observed 
insulating states with v ≠ 0 in Fig. 2b. These states have been observed 
at different locations of the device, and the majority of them also in a 
different device (Extended Data Figs. 3, 4).

Energy ordering and critical temperature
We determine the energy of each insulating state more quantitatively 
by performing a temperature-dependence study (Fig. 3a). On heating, 
the insulating states disappear one by one following a sequence that 
is largely consistent with the ordering inferred from the 2s resonance 
energy. We track the monotonic decrease of the 2s spectral weight 
with temperature (see an example in Extended Data Fig. 5). For each 
state, we estimate the critical temperature TC from the value at which 
the spectral weight drops to about 10% of its maximum. Figure 3b–f 
illustrates several examples with v = 1/2, v = 2/5, v = 1/3, v = 1/4, v = 1/7 
and their conjugate states at 1 − v with the occupied and empty sites 
switched. The behaviour of the 1 − v state is nearly identical to that of 
the v state. Figure 2c summarizes TC for all states. The observed 70 K for 
v = −2 and 150 K for v = −1 are in good agreement with earlier electrical 
transport measurements6 (see Extended Data Fig. 8 for dependence in 
the high-temperature range). Here TC characterizes the bandgap size for 
the single-particle moiré band insulator (|v| = 2) and the thermodynamic 
phase transition temperature for the other states. Similar analysis can 
be performed using the 2s resonance energy, but it is less sensitive to 
temperature than the spectral weight.

The ordering of the TC values of the insulating states (Fig. 2c) is fully 
consistent with the ordering of the 2s resonance energies (Fig. 2b).  
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Fig. 2 | An abundance of insulating states and their energy ordering in a 
WSe2/WS2 moiré heterostructure. a, Detail of Fig. 1f focusing on the 2s 
exciton in the sensor. An abundance of insulating states is revealed by 
blueshifts of the 2s exciton resonance, accompanied by an enhancement in the 
spectral weight. The top axis shows the proposed filling factor for the 
insulating states. b, c, The 2s exciton resonance energy (b) and the critical 

temperature TC (c) for all of the observed insulating states. A uniform width of 
about 0.05 is chosen for all of the states for clarity. It is comparable to the 
average FWHM of the states. The vertical error bars in c are standard deviations 
estimated from Fig. 3. For |v| < 1, the fractional-filling states are symmetric 
about |v| = 1/2 (marked in red); the energy (TC) of these states is approximately 
symmetric about |v| = 1/2, particularly, on the electron side.

Moiré material from aligned WS2/WSe2 “heterobilayers”

Γ M K Γ
-7

-6

-5

-4

-3

D
is

p
e
rs

io
n
[e

V
]

WSe2 band structure



14/22

Natural Strong Correlations
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W ⇠ 1/a2MEffective bandwidth
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U ⇠ 1/aMCoulomb Interaction

Small twist angle = Large Moiré unit cell = Strong correlations
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Simple effective model at K

Ref: Rademaker PRB ‘22
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ARPES results on twisted bilayer WSe2

V0 = 40 – 60 meV

ΚΓ

Ref: Gatti, Rademaker et al PRL 2023

Moiré bands at G are more correlated but moiré bands at K are higher in energy
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Idea: tune the valley charge-transfer
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Energy offset between valleys

Ref: Brzezinska, Gibertini, Rademaker, arXiv:2023
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Mean field theory result: tuning valley charge-transfer
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ν=2.2, ΔΓK=-6 meV
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ν=1.5, ΔΓK=-26 meV
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ν=2., ΔΓK=-2 meV
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ν=2., ΔΓK=6 meV
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ν=1., ΔΓK=-30 meV
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Mott-Hubbard in K

Charge-transfer ins.

Kondo lattice? Mott-Hubbard in G

Charge-transfer ins.

Kondo lattice?

Ref: Brzezinska, Gibertini, Rademaker, arXiv:2023
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Charge-transfer Wigner crystals
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Ref: Tsang, Tan, Dobrosavljevic, Rademaker; arXiv:2210.07926
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Chiral spin liquid

Ref: Motruk, Rossi, Abanin, Rademaker, PRR 2023
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Conclusion: Tuning Charge-Transfer in Moiré Materials

Moire materials allow us to surpass chemistry!

Twisted bilayer graphene:
Charge-transfer between localized and itinerant electrons
Rademaker, Mellado PRB 2018

TMD bilayers:
Tunable charge-transfer between G and K valleys
Gatti, Rademaker et al PRL 2023
Brzezinska, Gibertini, Rademaker, arXiv:2023

Wigner-Mott charge transfer insulators
Tsang, Tan, Dobrosavljevic, Rademaker; arXiv:2210.07926
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